Enclosures - letter from Dr. Gerald McEwen, CTFA, on June 8, 2005 in response to request for additional information/public comments on Toxicological Program (70 Federal Register 23877): Imidazolidinyl urea:

Salmonella/Mammalian-Microsome Plate Incorporation Mutagenicity Assay (Ames Test). Test Article AT0214 (Germall II - Diazolidinyl Urea). Microbiological Associates Study No. T2039.501. 42 pages.

Salmonella/Mammalian-Microsome Plate Incorporation Mutagenicity Assay (Ames Test). Test Article AT0214, Lot No. GT115. Diazolidinyl Urea (Germall II) RI 1157. Microbiological Associates Study No. T2039.501008. 35 pages.

Germall II. Mouse Micronucleus Test for Chromosomal Aberrations. PH 309-SU-001-86. 67 pages.

SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION MUTAGENICITY ASSAY (AMES TEST)

TEST ARTICLE AT0214 LOT NO. GT115

Diazolidinyl Urea (Germall II) RI 1157

Microbiological Associates A Unit of Whittaker Corporation 5221 River Road Bethesda, Maryland 20816 (301) 654-3400 Telex No. 90-8793

Whittaker

SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION MUTAGENICITY ASSAY (AMES TEST)

Sponsor:

Testing Facility:

1530 East Jefferson Street

Rockville, Maryland 20852

T2039.501008 Study No.:

Test Article I.D.: AT0214

Test Article Lot No.: GT115

Test Article Description: White Powder

Storage Conditions: Room Temperature with Desiccation;

Protected from Light

Date Received: 6/7/83

Date Study Started: 8/11/83

Date Study Completed: 9/15/83

Report Date: 9/15/83

Study Coordinator:

Study Director:

Steve R. Haworth, Ph.D.

Microbiological Associates

Steve R. Haworth, Ph.D.

Study Director

Group Leader

Biologist

Timothy/E.

Alternate Study Director

Sheila M. Olewine

Biologist

Linda M. Coyle

Biologist

QUALITY ASSURANCE STATEMENT

Study Title: Salmonella/Mammalian-Microsome Plate Incorporation

Mutagenicity Assay (Ames Test)

Study Number: T2039.501008

Study Director: S. Haworth, Ph.D.

Initiation Date: August 11, 1983

Review Completed Date: September 15, 1983

This study has been divided into a series of phases. Using a random sampling approach, Quality Assurance monitors each of these phases over a series of studies. Procedures, documentation, equipment, etc. are examined in order to assure that the study is performed in accordance with the Good Laboratory Practices regulations and to assure that the study is conducted according to the protocol.

The following are the inspection dates, phases inspected, and report dates of QA inspections of this study.

•	REPORT SUBM	AITTED TO
PHASE INSPECTED	STUDY DIRECTOR	MANAGEMENT
Protocol review	8/11/83	8/11/83
Preparation of S-9 mixes	s 8/17/83	8/18/83
Final report	9/15/83	9/15/83
	Protocol review Preparation of S-9 mixes	PHASE INSPECTED STUDY DIRECTOR Protocol review 8/11/83 Preparation of S-9 mixes 8/17/83

This report describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

Nona S. Karten

Associate Director RA/QA

Date

Introduction

test article AT0214, Lot No. GT115 was originally received on June 7, 1983, for testing in the Salmonella/mammalian-microsome mutagenicity assay (Ames test) using five tester strains, TA98, TA100, TA1535, TA1537 and TA1538, both with and without activation by Aroclor induced rat liver microsomes.

In this original Ames study, the test article was shown to cause slight increases in TA98 and TA1537 revertants per plate in the presence of 10% rat S-9 homogenate per ml of S-9 mix. Since the increase in revertants appeared to be S-9 dependent, a study was designed to investigate 1) the effect of increasing and decreasing the S-9 concentrations on revertant recovery, and 2) the effect of S-9 prepared from the livers of Aroclor 1254 induced hamsters compared to S-9 prepared from the livers of Aroclor 1254 induced rats.

The study employed tester strains TA98 and TA1537 and the following concentrations of S-9 homogenate per ml of S-9 mix for both hamster and rat S-9 preparations:

5% S-9 homogenate = .05 ml S-9 homogenate/ml of S-9 mix

10% S-9 homogenate = .10 ml S-9 homogenate/ml of S-9 mix

30% S-9 homogenate = .30 ml S-9 homogenate/ml of S-9 mix

Conclusions

The results of the specially designed <u>Salmonella</u>/mammalian-microsome mutagenicity assay indicate that under the conditions of this study, test article AT0214, Lot No. GT115 did not cause a positive response on either of the tester strains under any of the experimental conditions investigated.

The increases in TA98 and TA1537 revertants per plate were similar to those obtained in previous studies. Additionally, neither the species from which the S-9 was derived nor the

concentration of the homogenate used in the S-9 mix appeared to greatly influence the magnitude of the observed revertant increases. $\dot{}$

Media Preparation

Top Agar for Selection of Histidine Revertants: Minimal top agar was prepared with 8 g/liter Difco Bacto Agar and 5 g/liter NaCl. After autoclaving, the molten agar was distributed in 100 ml aliquots into sterile bottles and stored at room temperature. Immediately before its use in the mutagenicity assay, the top agar was melted and supplemented with 10 ml/100 ml agar of a sterile solution which contained 0.5 mM L-histidine and 0.5 mM D-biotin. Twenty-five ml of sterile deionized water was added per 100 ml top agar when it was used in assays without metabolic activation. This ensured that final top agar and amino acid supplement concentrations were the same on plates with or without metabolic activation.

Top Agar for Viable Count Determination: Minimal top agar as described above was supplemented with 35 ml/100 ml agar of a sterile solution which contained 1.4 mM L-histidine and 0.12 mM D-biotin.

Minimal Bottom Agar: Bottom agar was Vogel-Bonner minimal medium E.²

Nutrient Broth: Nutrient broth used for growing overnight cultures of the tester strains contained 25 g per liter of Nutrient Broth No. 2 (Oxoid).

Nutrient Bottom Agar: Nutrient bottom agar was Vogel-Bonner³ minimal medium E supplemented with 25 g per liter of Nutrient Broth No. 2 (Oxoid).

The experimental materials, methods and procedures are based on those described by Ames, B. N., et al. Methods for detecting carcinogens and mutagens with the <u>Salmonella/mammalian-microsome</u> mutagenicity test. Mutation Research 31: 347-364, 1975.

²Vogel, H. J. and D. M. Bonner, Acetylornithinase of E. coli: partial purification and some properties, J. Biol. Chem., 218:97-106 (1956).

³Thid.

Tester Strain Diluent: Diluent for tester strain titering contained Vogel-Bonner salt solution' supplemented with 10% Nutrient Broth.

Test Article Diluent: The solvent used for diluting the test article was deionized, distilled H₂O.

Tester Strains

The tester strains used were the histidine auxotrophs TA98 and TA1537 described by Ames.

GENOTYPE OF THE TA STRAINS USED FOR MUTAGEN TESTING

mutation	Additio	onal mutatio	ons
<u>his</u> D3052	LPS	Repair	R factor
TA98	rfa	uvrB	+R
	<u>rfa</u>	uvrB	-
	<u>his</u> D3052	hisD3052 LPS TA98 <u>rfa</u>	hisD3052 LPS Repair TA98 <u>rfa</u> <u>uvr</u> B

The tester strains possess characteristics which greatly enhance their sensitivity to mutagenic materials.

Both strains possess the <u>rfa</u> wall mutation which has resulted in the loss of much of the lipopolysaccharide layer that coats the surface of the bacteria. This allows the entry into the bacterial cells of large ring compounds that would otherwise be excluded by a normal intact cell wall. Secondly, a stable mutation resulting in the loss of an excision repair system (<u>uvrB</u>) further enhances both tester strains' sensitivity to some mutagens. Finally, strain TA98 contains the pkM101 plasmid which further increases the sensitivity of this strain to some mutagens.

TA98 and TA1537 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frame shift mutagens.

^{*}Vogel, H. J., et al., op cit.

⁵Ames, B. N., et al., op cit.

Tester strains in use at Microbiological Associates were received directly from Dr. Bruce Ames, Department of Biochemistry, University of California, Berkeley.

Tester strain stocks were stored in liquid nitrogen, and fresh cultures were inoculated directly from these frozen stocks. Broth cultures were grown overnight at 37°C with shaking. At the time of its use in the mutagenicity assay, each culture was checked, as described by Ames, for the presence of the <u>rfa</u> wall mutation and strain TA98 was checked for the presence of the pkM101 plasmid.⁶

Plating Procedures for the Mutagenicity Assay

Test System Identification: Each plate was labeled using indelible ink with a code system which identifies the test article, test phase, dose level and activation as described in detail in Microbiological Associates' Microbial Mutagenesis Standard Operating Procedures.

Test Article: The test article was solubilized and serially diluted immediately before its use in the mutagenicity assay. Five doses of the test article were plated with TA98 and TA1537 with metabolic activation. All positive controls, solvent controls and test article doses were plated in triplicate. With metabolic activation, 50 μl of tester strain, 50 μl of solvent or test article, and 0.5 ml of the appropriate S-9 mix were added to 2.0 ml of molten selective top agar at 45°C. After vortexing, the mixture was overlaid onto the surface of 25 ml of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for 48 hours at 37°C.

<u>Positive Controls</u>: All combinations of positive controls and tester strains plated along with the assay are listed below:

Strain	<u>Activation</u>	Positive Controls	Conc. per Plate
TA98	+	2-Aminoanthracene	4.0 µg
TA98	***	2-Nitrofluorene	5.0 µg
TA1537	+	2-Aminoanthracene	4.0 µg
TA1537	-	9-Aminoacridine	75 µg

⁶Ames, B. N., et al., op cit.

Source and Grade

9-Aminoacridine (CAS #90-45-9), Sigma Chemical Co., grade II, $\sim 90\%$ pure

2-Aminoanthracene (CAS #613-13-8), Sigma Chemical Co., practical grade

2-Nitrofluorene (CAS #607-57-8), Aldrich Chemical Co., 98% pure

Tester Strain Titers: Tester strain titers were determined by viable count assays on nutrient agar plates. The averaged number of cells plated per plate are reported on the individual strain data forms.

Test Article Sterility Determination: The most concentrated test article dilution for the mutagenicity assay was checked for sterility by plating a 50 μl aliquot of the dilution on selective agar.

Liver Microsomal Enzymes

Preparation of S-9 Homogenate: Rat liver microsomal enzymes were prepared from male Sprague-Dawley rats that had been injected with Aroclor 1254 at 500 mg/kg. Hamster liver microsomal enzymes were prepared from male Syrian hamsters that had been injected with Aroclor 1254 at 500 mg/kg. The Aroclor was diluted in corn oil to a concentration of 200 mg/ml. Five days after their i.p. injection with the Aroclor, the animals were sacrificed by decapitation, and their livers were excised.

The preparation of the microsomal enzyme fraction was carried out with sterile glassware and solutions at $0-4^{\circ}C$. The excised livers were placed in approximately 20 ml of 0.15M KCl contained in a pre-weighed beaker. After weighing the liver, it was transferred to another beaker containing 3 volumes of 0.15M KCl (3 ml/g of wet liver) where it was minced with sterile scissors. The minced liver was homogenized and centrifuged at 9000 x g for 10 minutes. The supernatant (referred to by Ames as the S-9 fraction)

was decanted, and small aliquots were distributed into freezing ampules which were stored at $\leq -70^{\circ}$ C.

Preparation of S-9 Mix: The S-9 mixes were prepared immediately before their use in the mutagenicity assay.

For both rat and hamster activation, three different S-9 mixes were used in this study. The mixes differ only in the amount of S-9 homogenate added per ml of S-9 mix. The components per ml of each S-9 mix are indicated below:

5% S-9 Homogenate

H ₂ O	0.61 ml
1.00M NaH ₂ PO ₄ , pH 7.4	0.10 ml
0.20M MgCl ₂ /0.825M KCl	0.04 ml
0.05M G-6-P	0.10 ml
0.04M NADP	0.10 ml
S-9	$\frac{0.05 \text{ ml}}{1.00 \text{ ml}}$
10% S-9 Homogenate	
H ₂ O	0.56 ml

1.00M NaH ₂ PO ₄ , pH 7.4		0.10 ml
0.20M MgCl ₂ /0.825M KCl		0.04 ml
0.05M G-6-P		0.10 ml
0.04M NADP		0.10 ml
S-9	•	0.10 ml

30% S-9 Homogenate

H ₂ O	0.36	ml
1.00M NaH ₂ PO ₄ , pH 7.4	0.10	ml
0.20M MgCl ₂ /0.825M KCl	0.04	ml
0.05M G-6-P	0.10	ml
0.04M NADP	0.10	ml
S-9	0.30	ml
	1.00	ml

Each plate received 0.5 ml of the S-9 mix.

Colony Counting

Revertant colonies for a given tester strain within a given test article dilution series were counted either entirely by automated colony counter or entirely by hand. Plates with sufficient test article precipitate to interfere with automated colony counting were counted manually.

The condition of the background bacterial lawn was evaluated for evidence of test article toxicity, by using a dissecting microscope. This toxicity was scored relative to the solvent control plate and recorded along with the revertant count for that plate on the individual strain data forms using the code system on page 19.

Analysis of Data

All platings were done in triplicate. For each triplicate plating, an average and standard deviation were calculated. The calculations were done on a Hewlett-Packard HP-25 programmable calculator which employs the following equations:

Average
$$(\overline{x})$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard Deviation (S_x)

$$S_{X} = \sqrt{\frac{\sum x^{2} - (\sum x)^{2}}{n}}$$

Evaluation of Mutagenicity Assay Data

For a test article to be considered positive, it must cause at least a doubling in the mean revertants per plate of at least one tester strain. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article. In those cases where the observed dose-responsive increase in TA1537 revertants per plate is less than three-fold, the response must be reproducible.

Archives

All experimental records of the study are maintained in the Microbiological Associates' archives located at 1530 East Jefferson Street, Rockville, Maryland, 20852.

Nona Karten, of the Regulatory Affairs and Quality Assurance Unit, is responsible for maintaining the archives.

Stability of the Test Article

The stability of the test article under the actual experimental conditions used in this study was not determined by Microbiological Associates.

RESULTS

TABLE T2039, 501008

Study Number

Test Article Identification AT0214, Lot No. GT115

Concentration (µg per plate) Concentration (µg per plate) 909 23 57 20 21 34 200 45 42 42 40 ന 400 33 46 38 34 200 34 39 36 m 35 23 23 100 9 17 28 Solvent Control Solvent Control H 20 39 33 32 9 27 Revertants Revertants Deviation Averaged Standard plate per x108 5% Experiment Number Liver Microsomes: Rat Date Plated: 8/17/83 Colonies Counted by: Cells Seeded: 1.4 T2039-B6 \boxtimes Strain: TA98 Machine Hand -11

	909	m	23	m	25	3	33	27	5	ting been
7 7 3	500	2	25	7	39	2	45	36	10	lawn colonies on these a probable plating counts have not been calculations.
	400		28	2	**0	2	*,0	28	1	ond lawn co cates a prob these counts
	200	٠ **	0	2	***0	2	**0	1	i	uation backgroundic ndic h, tl
	100		31		3.3		27	30	3	rtants and rtants and dose level
Control	H20 50 ul		26		26		31	28	3	eka]
	•	*		Revertants -	per	plate -		Averaged Revertants	Standard Deviation	*Background bacteria **The absence of revel plates at non-toxic procedural error. I
T2039-B6	Experiment Number		Strain: TA98	Date Plated: 8/17/83	Cells Seeded: 1.4 x108	Liver Microsomes: Hamster5%	Colonies Counted by:	Hand Machine		Form No. MA-160

TABLE 2 T2039,501008

Study Number

AT0214, Lot No. GT115 Test Article Identification

Concentration (µg per plate) dog 42 33 Ŋ 34 36 500 40 43 48 44 4 400 37 20 41 35 ω 200 20 23 28 24 4 33 21 100 29 Solvent Control H₂O Solvent Control H₂O 50 µl 22 28 26 28 Revertants Revertants Deviation Standard Averaged plate per x108 Liver Microsomes: Rat 10% Experiment Number Date Plated:8/17/83 Colonies Counted by: Cells Seeded: 1.4 T2039-B6 × Strain: TA98 Machine Hand -12-

Experiment Number		Strain: TA98	Date Plated: 8/17/83		Liver Microsomes: 108	Colonies Counted by:		Machine
H2O 50 ul	*	34		39		33	35	3
100		39		24		30	3,	
100 200 400		36		32		36	35	
400		47		46		44	46	
500	2	49	2	53	2	53	52	
-009	3	30	3	40	7	37	36	
	_]	. -	_]]			

Concentration (µg per plate)

T2039-B6

Form No. MA-160 12/17/82

*Background bacterial lawn evaluation code

ω

m

Deviation

Standard

S

2

TABLE 3

T2039, 501008 Study Number

AT0214, Lot No. GT115 Test Article Identification

Experiment Number		50 ul	777	- XX	777				,
	*						2		
		_]	-	
Strain: TA98		23	25	23	34	23	46		
nate Dlated 8/17/83	Revertants						2]	
	3]							
Cells Seeded: 1.4 x10 ⁸	i Di	۲.	30	31	37	53	52		
Hamster	plate						2		
TIME LITET CACHES: 30.8]					
Colonies Counted by:		37	35	22	39	47	70		
Hand A	Averaged		6	2	37	7	n A		·
Machine	Revertants	30	30	C7	<u>, </u>	TC	3		
	Standard	t		u	۳,	,	12		
	Deviation	,	0			,			
Form No. MA-160	*Background bacterial lawn evaluation code	bacteria	l lawn ev	aluation	code			•	

Form No. MA-160 12/17/82

T2039,501008 Study Number

AT0214, Lot No. GT115 Test Article Identification

#2039-R6		Solvent			Concentration (ug per plate)	ion (ug p	er plate)	1		
Experiment Number		H20	100	200	400	200	600			
	*				2	2	3			
Strain: TA1537		თ	ທ	6	12	6	10			
Date Plated: 8/17/83	Revertants				2	2	3			
Cells Seeded: 1.5 x108	per	œ	7	Ŋ	80	13	9			
Liver Microsomes: Rat 5%	plate				2	2	3			
Colonies Counted by:		12	8	6	11	12	8			
Hand Machine	Averaged Revertants	10	7	8	10	11	. 8			
	Standard Deviation	2	2	2	2	2	2			
		Solvent			Concentration (ug per plate)	ion (ug p	er plate)			
T2039-B6 Experiment Number		H20	100	200	400	500	009			
	*				2	2	3			
Strain: TA1537		7	6	10	10	10	9			
Date Plated: 8/17/83	Revertants				2	2	2			_
Cells Seeded: 1.5 x108	per	12	ά	9	12	6	5			
Hamster Liver Microsomes: 5%	plate				2	2	3]	
Colonies Counted by:		8	5	6	10	8	4			
Hand 🖾	Averaged		ŗ	c	11	0	ſſ			
Machine	Revertants	6	,	٥	7.7					
	Standard Deviation	3	2	2	H	1				
Form No. MA-160	*Background bacteri	bacterial		lawn evaluation code	code					

Form No. MA-160 12/17/82

TABLE 5 T2039,501008

Study Number

Test Article Identification GT115 Lot No. AT0214

Concentration (µg per plate) Concentration (ug per plate) 2 (1 12 900 dog 12 10 ω σ 4 500 500 o 12 ω 10 ~ ø 10 10 10 9 400 10 14 1 10 400 200 12 ω 6 ~ 9 200 σ σ 9 σ S ហ ~ 100 100 Solvent Control H₂O 50 ul Solvent Control 50 ul H 20 9 ∞ m 9 Revertants Revertants Revertants Deviation Standard Averaged Averaged plate plate per per Hamster 10% x108 Liver Microsomes: Rat 10% x108 Experiment Number Experiment Number Date Plated: 8/17/83 Date Plated: 8/17/83 Colonies Counted by: Colonies Counted by: Liver Microsomes: 1,5 Cells Seeded: 1.5 T2039-B6 T2039-B6 Strain: TA1537 Strain: TA1537 Cells Seeded: Machine Hand Hand

Form No. MA-160 12/17/82

*Background bacterial lawn evaluation code

~

Deviation

ហ

ဖ

Revertants

Machine

Standard

 \sim

9

-15-

TABLE 6

T2039,501008

Study Number

Test Article Identification Lot No. AT0214,

Concentration (µg per plate) Concentration (ug per plate) ~ 7 12 909 10 909 Φ 18 13 S 500 500 15 22 10 4 2 14 6 6 6 ω 6 σ m 400 400 9 9 *Background bacterial lawn evaluation code 200 17 14 13 6 ω 202 ហ 9 ∞ σ α 15 S σ S -100 100 Solvent Control H2O 50 µl H₂0 50 ul Solvent Control 18 13 13 ហ S 14 œ S Revertants Revertants Revertants Revertants Deviation Deviation Standard Standard Averaged Averaged plate plate per per Hamster 30% Liver Microsomes: Rat 30% ×108 x108 Experiment Number Experiment Number Date Plated:8/17/83 Date Plated: 8/17/83 Colonies Counted by: Colonies Counted by: Cells Seeded: 1.5 Liver Microsomes: Cells Seeded: 1,5 T2039-B6 T2039-B6 \boxtimes Strain: TA1537 Strain: TA1537 Machine Machine Hand Hand -16-

Form No. MA-160 12/11/82

SALMONELLA MUTAGENESIS ASSAY

Positive Controls

Table 7

-	s.b.	52		58	91	74	157	118	51			
ATO214, Lot No. GT115 Test Article Identification	Averaged Revertants per plate	1172		3349	2015	830	3028	2602	504			
ATO214, Lot No. est Article Ide	Plate	1227		3312	2092	780	3203	2489	554			
Test	Revertants/Plate	1124		3416	1914	915	2899	2725	453			
	Rever	1166	·	3319	2039	795	2982	2593	506			
i6 Number	Metabolic Activation	None		Rat 5%	Rat 10%	Rat 30%	Hamster 5%	Hamster 10%	Hamster 30%		-	
T2039-B6 Experiment Number	Concentration per plate	5.0 µg		4.0 ug	4.0 ug	4.0 ug	1.5 119	1.5 µg	1.5 µg		·	
1008 umber	Chemical	2-Nitrofluorene		2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene			
T2039,501008 Study Number	Strain	TA98		TA98	TA98	TA98	TA98	TA98	TA98			
	Date Plated	8/11/83		8/17/83	8/17/83	8/17/83	8/17/83	8/17/83	8/17/83			

Form No. 1/7/83

SALMONELLA MUTAGENESIS ASSAY

Positive Controls

Table 8

	S.D.	57	48	. 2	19		23.	18	2			
AT0214, Lot No. GT115 Test Article Identification	Averaged Revertants per plate	399	503	293	77		436	314	59	,		
14, Lot Articl	Plate	426	457	287	99		444	316	58			
ATO2 Test	Revertants/Plate	333	552	295	99		455	331	62			
	Rever	438	500	297	9		410	296	58			
6 Number	Metabolic Activation	None	Rat 5%	Rat 10%	Rat 30%		Hamster 5%	Hamster 10%	Hamster 30%			
T2039-B6 Experiment Number	Concentration per plate	75 ng	4.0 ug	4.0 ug	4.0 ug		1.5 µg	1.5 uq	1.5 µg			
T2039.501008 Study Number	Chemical	9-Aminoacridine	2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene		2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene			
	Strain	TA1537	ma1537	ma1537	ma1537		ጥል1537	ma 1537	TA1537			
	Date Plated	8/17/83	0/11/0	CO//T/0	6/11/83	CS / 17 / O	8/17/83	6/11/0	8/11/83	20/12/0		

Form No. MA-161 1/7/83

BACTERIAL BACKGROUND LAWN EVALUATION CODES

The condition of the background bacterial lawn is evaluated, first macroscopically and then microscopically (using a dissecting microscope). The evaluation is recorded using the following code:

Code	Definition	Characteristics
l or blank	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
5	Absent	Distinguished by a complete lack of any microcolony background lawn.
6	Obscured by Precipitate	The background bacterial lawn cannot be accurately evaluated due to microscopic test article precipitate.

Evidence of macroscopic test article precipitate on the plates is recorded by addition of the following precipitate code to the code number used to evaluate the condition of the background bacterial lawn.

SP	Slight Precipitate	Distinguished by noticeable precipitate on the plate, however, the precipitate does not influence automated counting of the plate.
MP	Moderate Precipitate	Distinguished by a marked amount of precipitate on the plate, requiring the plate to be hand counted.
HP	Heavy Precipitate	Distinguished by a large amount of precipitate on the plate, making the required hand count difficult.

Thus, 3-MP would indicate a plate observed to have a moderately reduced background lawn with a marked amount of precipitate which required a hand count.

APPENDIX

PROTOCOL AMENDMENT

September 15, 1983 Date:

Sponsor:

Sponsor's Test Article Designation: AT0214

Study No.: T2039.501008

Protocol No.: SPGT501008 080983

Protocol Title: Salmonella/Mammalian-Microsome Plate Incorporation Mutagenicity Assay (Ames Test)

Section 6.3.2, S-9 Mix; the stock solution listed as "0.04M G-6-P" should be "0.05M G-6-P".

Reason for Amendment:

Typographical error in protocol preparation.

APPROVAL:

Steve R. Haworth, Ph.D.

Study Director

Ph.D.

Study Coordinator

Received by RA/QA 8/11/83
N.N./ybe

SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION MUTAGENICITY ASSAY (AMES TEST)

1.0 PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test article (or its metabolites) based on its ability to induce back mutations at selected loci of selected strain(s) of Salmonella typhimurium in the presence of exogenous metabolic activation by three different concentrations of induced rat and hamster liver microsomes.

2.0 TEST ARTICLE

- 2.1 Identification: AT0214
- 2.2 Analysis:
 The sponsor will be directly responsible for determination and documentation of the analytical purity and composition of the test article (see attached Test Article Characterization form) and the stability of the dosing solutions.

3.0 SPONSOR

- 3.1 Name:
- 3.2 Address:
- 3.3 Authorized Representative:

4.0 TESTING FACILITY

- 4.1 Name: Division of Genetic Toxicology Microbiological Associates
- 4.2 Address: 5221 River Road
 Bethesda, Maryland 20816
- 4.3 Study Location: Rockville Laboratory
- 4.4 Study Director: Steve R. Haworth, Ph.D.

5.0 TEST SYSTEM

The Ames Test has been shown to be a sensitive, rapid, accurate indicator of the mutagenic activity of a wide range of chemical classes.

The <u>Salmonella</u> <u>typhimurium</u> histidine auxotroph tester strains to be used may include TA98, TA100, TA1535, TA1537 and TA1538 as described by Ames (Ames, et al., Mutation Research <u>31</u>:347-364, 1975). The actual strains to be used will be as follows:

TA98, TA1537

SRH 8/10/83 Initials Date

GENOTYPE OF THE TA STRAINS USED FOR MUTAGEN TESTING

Histidine mutation			Additional mutations			
hisG46	hisC3076	hisD3052	LPS	Repair	R factor	
TA1535	TA1537	TA1538	rfa	uvrB	_	
TA100		TA98	<u>rfa</u>	uvrB	+R	

All of the tester strains contain, in addition to a mutation in the histidine operon, two additional mutations which enhance their sensitivity to some mutagenic compounds. The <u>rfa</u> mutation causes a loss of one of the enzymes responsible for the synthesis of part of the lipopolysaccharide layer of the cell wall. The resulting cell wall deficiency increases the permeability of the cell to certain classes of chemicals such as those containing large ring systems that would otherwise be excluded by a normal intact cell wall.

The second mutation is a deletion in the <u>uvrB</u> gene which results in a deficient DNA excision-repair system. This deficiency results in greatly enhanced sensitivity to some mutagens. Since the <u>uvrB</u> deletion extends through the <u>bio</u> gene, all of the tester strains containing this deletion also require the vitamin biotin for growth.

Finally, strains TA98 and TA100 also contain the pkM101 plasmid (carrying the R-factor) which further increases the sensitivity of these two strains to some mutagens. The mechanism by which this plasmid increases sensitivity to mutagens has been suggested to be due to its coding for an error-prone DNA repair polymerase.

TA98, TA1537 and TA1538 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frame shift mutagens. TA100 and TA1535 are reverted by mutagens that cause base substitutions.

- 5.1 Source
 Tester strains in use at Microbiological Associates were received directly from Dr. Bruce Ames, Department of Biochemistry, University of California, Berkeley.
- 5.2 Storage
 All Frozen Permanent and Working Stocks of the tester strains will be stored in liquid nitrogen. Working Stocks will be prepared by growing a fresh overnight culture inoculated by a scrape of the Frozen Permanent Stock, adding DMSO (.09 ml/ml of culture) and freezing away small aliquots (0.1 0.2 ml) in glass vials.
- 5.3 Overnight Culture Preparation
 Overnight cultures will be prepared by removing a
 Working Stock vial from the liquid nitrogen freezer
 and allowing it to thaw. A loopful of the thawed
 aliquot will be transferred to a baffled shake flask
 containing approximately 50 ml of culture media.
 The inoculated flask will be placed in a shaker/
 incubator at 37°C.
- 5.4 Harvesting of Cultures
 All cultures will be harvested by monitoring optical
 density rather than by duration of incubation since
 overgrowth of cultures can cause loss of sensitivity
 to some mutagens. Cultures will be removed from
 incubation at a density of approximately 1-2 x 10
 cells per ml.
- 5.5 Genotype Characterization On the day of their use in the mutagenicity assay, all tester strain cultures will be checked for the following genetic markers:
 - 5.5.1 The presence of the <u>rfa</u> wall mutation will be confirmed by demonstration of sensitivity to crystal violet.
 - 5.5.2 The presence of the pkM101 plasmid will be confirmed for tester strains TA98 and TA100 by demonstration of resistance to Ampicillin.
 - 5.5.3 Spontaneous reversion frequencies that are characteristic of the respective strains will be demonstrated by plating aliquots of the culture on selective media.

6.0 EXPERIMENTAL DESIGN

The test article will be tested at a minimum of five dose levels along with appropriate solvent and positive controls on <u>Salmonella</u> tester strains which may include TA98, TA100, TA1535, TA1537 and TA1538 with and without metabolic activation. Following an approximate 48 hour incubation at 37°C, revertant colonies per plate will be counted.

Dose Levels Unless other supporting data is available, a preliminary toxicity study will be conducted. Using TA100 as the indicator strain, each test article will be checked for toxicity up to a concentration of 10 mg/ plate if solubility/miscibility permits. articles which exhibit limited solubility/miscibility will be tested for toxicity up to the maximum workable concentration attainable in the solvent of choice. The toxicity determination will be conducted in the presence of exogenous metabolic activation. An aliquot from each of at least eight dilutions of the test article will be plated with an overnight TA100 culture on selective minimal agar. Toxicity is detectable as a decrease in the number of revertant colonies occurring per plate and/or by a thinning or disappearance of the background bacterial lawn. The highest concentration of test article used in the subsequent mutagenicity assay will be that which gives a detectable reduction of revertants on the selective plates and/or a thinning or disappearance of the background bacterial lawn.

If no toxicity is observed, then the highest dose level used in the mutagenicity assay will be 10 mg/plate unless:

- 1) The test article exhibits limited solubility or is not uniformly dispersible in the solvent of choice.
- 2) The test article precipitates heavily in the top agar.
- 3) There is insufficient test article available to either demonstrate toxicity or achieve a maximum dose level of 10 mg/plate.
- 4) The study coordinator indicates an alternate top dose level.
- 6.2 Frequency and Route of Administration
 The test system will be exposed to the test article
 via the plate incorporation methodology originally

described by Ames (Ames, et al., Mutation Research 31:347-364, 1975). This methodology has been shown to detect a wide range of classes of chemical mutagens. All dose levels of test article, solvent controls and positive controls will be plated in triplicate.

- 6.3 Exogenous Metabolic Activation
 - 6.3.1 Liver Microsomal Enzymes S-9 Homogenate
 - 6.3.1.1 Homogenate Preparation The preparation of the microsomal enzyme fraction will be carried out with sterile glassware and solutions at 0-4°C. Excised livers will be placed in approximately 20 ml of 0.15M KCl contained in a pre-weighed beaker. After the liver is weighed, it will be transferred to another beaker containing 3 volumes of 0.15M KCl (3 ml/g of wet liver) where it will be minced with sterile scissors. The minced liver will be homogenized and centrifuged at 9000 x g for 10 minutes. The supernatant (referred to by Ames as the S-9 fraction) will be decanted, and small aliquots will be distributed into freezing ampules which will be stored at $< -70^{\circ}$ C.
 - 6.3.1.2 S-9 Characterization
 Each batch of S-9 homogenate will be characterized for its ability to metabolize the promutagens 7,12dimethylbenzanthracene, and 2-aminoanthracene to mutagens as described by deSerres (deSerres, et al., Science 203:563-565, 1979).
 - 6.3.1.3 Species, Strain, Sex, Inducer
 Liver microsomal enzymes will be
 prepared from male Sprague-Dawley
 rats and male Syrian hamsters that
 have been injected with Aroclor 1254
 at 500 mg/kg. The Aroclor will be
 diluted in corn oil to a concentration of 200 mg/ml. Five days after
 i.p. injection with the Aroclor, the
 rats and hamsters will be sacrificed
 by decapitation, and their livers
 will be excised.

6.3.2 S-9 Mix

The S-9 mixes will be prepared immediately prior to their use in any experimental procedure.

Three different S-9 mixes will be used in this study. The mixes will differ only in the amount of S-9 homogenate added per ml of S-9 mix. The components per ml of each S-9 mix are indicated below:

5% S-9 Homogenate

H ₂ 0	0.61 ml
1.00M NaH ₂ PO ₄ , pH 7.4	0.10 ml
0.20M MgCl ₂ /0.825M KCl	0.04 ml
0.04M G-6-P	0.10 ml
0.04M NADP	0.10 ml
S-9	0.05 ml
	1.00 ml
10% S-9 Homogenate	
H ₂ O	0.56 ml
1.00M NaH ₂ PO ₄ , pH 7.4	0.10 ml
0.20M MgCl ₂ /0.825M KCl	0.04 ml
0.04M G-6-P	0.10 ml
0.04M NADP	0.10 ml
S-9	0.10 ml
	1.00 ml

30% S-9 Homogenate

H ₂ O		0.36	ml
1.00M	NaH ₂ PO ₄ , pH 7.4	0.10	ml
0.20M	MgCl ₂ /0.825M KCl	0.04	ml
0.04M	G-6-P	0.10	ml
0.04M	NADP	0.10	ml
S-9		0.30	ml
		1.00	ml

Each plate will receive 0.5 ml of the S-9 mix.

6.4 Controls

6.4.1 Positive Controls
All combinations of positive controls and
tester strains plated concurrently with the
assay are listed below:

Strain	Activation	Positive Controls	Conc. per Plate
TA98 TA98	+	2-aminoanthracene 2-nitrofluorene	4.0 ug 5.0 ug
TA100 TA100	+	2-aminoanthracene sodium azide	4.0 ug 5.0 ug
TA1535	+	2-aminoanthracene sodium azide	4.0 ug 5.0 ug
TA1535 TA1537	+	2-aminoanthracene 9-aminoacridine	4.0 ug
TA1537 TA1538	+	2-aminoanthracene	75 ug 4.0 ug
TA1538		2-nitrofluorene	5.0 ug

6.4.2 Solvent Controls
Appropriate solvent controls will be plated
for all strains with exogenous metabolic
activation. Solvents compatible with this
test system in order of preference include
but will not be limited to: Deionized distilled
H₂O, dimethylsulfoxide (CAS #67-68-5),
acetone (CAS #67-64-1), and ethanol
(CAS #64-17-5).

6.4.3 Sterility Controls

6.4.3.1 The most concentrated test article dilution will be checked for sterility.

-27-

- 6.4.3.2 The S-9 mix will be checked for sterility.
- 6.4.4 Tester Strain Titers

 Each tester strain titer will be determined by plating an appropriate dilution of each over-night culture on complete agar.

7.0 METHODS

7.1 Plating Procedures for the Mutagenicity Assay
The test article will be solubilized and serially
diluted immediately before its use in the mutagenicity
assay. S-9 mixes will also be prepared immediately
prior to their use in the mutagenicity assay.

At least five doses of the test article will be plated with the appropriate tester strains, with each exogenous metabolic activation system.

Fifty ul of tester strain, 50 ul of solvent or test article solution and 0.5 ml of S-9 mix will be added to 2.0 ml of molten selective top agar at 45°C. After vortexing, the mixture will be overlayed onto the surface of 25 ml of minimal bottom agar. After the overlay has solidified, the plates will be inverted and incubated for approximately 48 hours at 37°C. When necessary, aliquots of other than 50 ul of test article/solvent will be plated.

- 7.2 Test System Identification
 Each plate will be labeled using indelible ink with a code system which identifies the test article, test phase, dose level, strain and activation type as described in detail in Microbiological Associates' Microbial Mutagenesis Standard Operating Procedures.
- 7.3 Colony Counting
 Revertant colonies for a given tester strain within a given test article dilution series will be counted either entirely by automated colony counter or entirely by hand. Plates with sufficient test article precipitate to interfere with automated colony counting will be counted manually.
 - 7.3.1 Background Bacterial Lawn Evaluation
 The condition of the background bacterial
 lawn on plates in the assay will be evaluated
 for evidence of test article toxicity and
 precipitate. Evidence of toxicity will be
 scored relative to the solvent control plate
 and recorded along with the revertant count
 for that plate.

7.4 Analysis of Data For all replicate platings, the mean revertants per plate and the standard deviation will be calculated.

8.0 EVALUATION OF TEST RESULTS

For a test article to be considered positive, it must cause at least a doubling in the mean revertants per plate of at least one tester strain. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article. In those cases where the observed dose-responsive increase in TA1537 or TA1538 revertants per plate is less than three-fold, the response must be reproducible.

9.0 CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the assay to be considered valid:

- 9.1 Tester Strain Integrity
 - 9.1.1 rfa Wall Mutation
 In order to demonstrate the presence of the deep rough wall mutation, all tester strain cultures must exhibit sensitivity to crystal violet.
 - 9.1.2 pkM101 Plasmid R-factor In order to demonstrate the presence of the pkM101 plasmid R-factor, tester strain cultures of TA98 and TA100 must exhibit resistance to Ampicillin.
 - 9.1.3 Characteristic Number of Spontaneous Revertants All tester strain cultures must exhibit a characteristic number of spontaneous revertants per plate. The acceptable ranges are as follows:

TA98	10	-	50
TA100	80		240
TA1535	5	_	45
TA1537	3	_	21
TA1538	5	_	35

9.1.4 Tester Strain Titers
In order to ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than 1x10 but less than 4x10.

9.1.5 Positive Control Values
Positive control values must exhibit at least a
three fold increase in the number of revertants
per plate over the average value for the solvent control for the respective strain.

9.2 Toxicity

9.2.1 Minimum Number of Dose Levels
A minimum of three non-toxic dose levels are required to evaluate assay data.

10.0 FINAL REPORT

A report of the results of this study will be prepared by the Testing Laboratory and will accurately describe all methods used for generation and analysis of data.

Results of the preliminary toxicity determinations will be presented which will include the number of revertants per plate and a background bacterial lawn evaluation for each dose level.

Results presented for the mutagenicity assay will include the number of revertants per plate with a corresponding background bacterial lawn evaluation, along with a mean and standard deviation for all replicate platings.

11.0 RECORD AND TEST ARTICLE ARCHIVES

- 11.1 Records
 Upon completion of the final report, all raw data and reports will be maintained by the Regulatory Affairs Unit of Microbiological Associates in accordance with the Terms and Conditions.
- 11.2 Test Article
 A sample of the Test Article will be held in storage in accordance with the Terms and Conditions.

12.0 GOOD LABORATORY PRACTICES

This study will be performed in compliance with the provisions of the Good Laboratory Practice Regulations for Nonclinical Laboratory Studies.

Will this study be submitted to a regulatory agency?

If so, to which agency or agencies?

Does the sponsor request that samples of the Test Article dosing solutions be returned?

13.0 SCHEDULE OF EVENTS

- 13.1 Proposed Initiation Date: 8/11/83
- 13.2 Scheduled Completion Date: 8/3//83

14.0 REFERENCES

Ames, B.N., McCann, J., and Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/Mammalian-Microsome Mutagenicity test. Mutation Research 31:347-364, 1975.

deSerres, et al., The Salmonella Mutagenicity Assay: Recommendations, Science 203:563-565, 1979.

8/9/83

DATE PROTOCOL APPROVED BY SPONSOR

STUDY DIRECTOR

BY SPONSOR

F/11/83

DATE

President & CEO

June 2, 2005

Dr. Scott A. Masten
Office of Chemical Nomination and Selection
NIEHS/NTP
111 T.W. Alexander Drive
P.O. Box 12233
Research Triangle Park, NC 27709

RE: Request for Additional Information on Toxicological Study Nominations to the National Toxicology Program (70 Federal Register 23877): Imidazolidinyl Urea

Dear Dr. Masten,

The Cosmetic, Toiletry, and Fragrance Association¹ (CTFA) appreciates the opportunity to provide additional information on the above referenced topic. Imidazolidinyl Urea is used as a preservative within the personal care products industry, and thus its nomination for study is of interest to CTFA members. When reading the NTP background document on Imidazolidinyl Urea, we noted that data on Diazolidinyl Urea are also included. The background document cites the Cosmetic Ingredient Review (CIR) as finding that Diazolidinyl Urea was not mutagenic in *S. typhimurium* and that it does not induce micronuclei, but that no technical details were available.

The three unpublished studies regarding genotoxicity of Diazolidinyl Urea cited in the CIR report are enclosed. These papers are listed as follows in the reference section of the CIR report.

- 33. Microbiological Associates. (July 29, 1983). Salmonella/mammalian-microsome mutagenicity assay. Submission of unpublished data by CTFA.
- 34. Microbiological Associates (September 15, 1983). Salmonella/mammalian-microsome mutagenicity assay. Submission of unpublished data by CTFA.
- 35. Pharmakon Research International, Inc. (December 12, 1986). Micronucleus test. Submission of unpublished data by CTFA.

¹Based in Washington, D.C., CTFA is the trade association representing the cosmetic, toiletry, and fragrance industry in the United States and globally. Founded in 1894, CTFA has a membership of nearly 600 companies including manufacturers, distributors, and suppliers for the vast majority of finished personal care products marketed in the United States.

Unpublished data cited in CIR reports are available from CIR upon request. In the future, if unpublished data cited in CIR reports are needed by the NTP, please contact Dr. Carol Eisenmann, at CTFA (eisenmannc@ctfa.org) and she will assist you in getting this information.

Sincerely,

Gerald N. McEwen, Jr., Ph.D., J.D.

Vice President - Science

Scott Masten

Subject: Imidazolidinyl Urea

Date: Monday, June 6, 2005 10:16 AM

From: Carol Eisenmann <eisenmannc@ctfa.org>

To: <masten@niehs.nih.gov>

Dear Dr. Masten,

RE: Request for Additional Information on Toxicological Study Nominations to the National Toxicology Program (70 Federal Register 23877): Imidazolidinyl Urea

Attached, please find a submission letter and three unpublished studies on Diazolidinyl Urea mentioned in the Imidazolidinyl Urea background document.

This submission was also sent to you by FedEx on Friday June 3, 2005.

Sincerely,

Carol

Carol J. Eisenmann, Ph.D., D.A.B.T. Toxicologist, Science Department CTFA 1101 17th Street, N.W., Suite 300 Washington DC 20036-4702 Phone: 202 331-1770 Fax: 202 331-1969

Fax: 202 331-1969 eisenmannc@ctfa.org

GERMALL II

MOUSE MICRONUCLEUS TEST FOR CHROMOSOMAL ABERRATIONS

PH 309-SU-001-86

WAVERLY, PENNSYLVANIA 18471

PHONE (717) 586-2411

Micronucleus Test (MNT) EPA

PH 309-SU-001-86

Germall II Lot # GT-152

Submitted to

Sutton Laboratories, Inc. Chatham, New Jersey

Study Director

TABLE OF CONTENTS

SUMMARY	
STUDY DESCRIPTION	2
PURPOSE	3
METHODS AND MATERIALS Preparation of Control and Test Articles	
Positive Control Article	4
Dose Selection	
MICRONUCLEUS TEST Treatment Procedure	
Pharmacotoxic Effects of Treatment	
Staining	6
Criteria for Scoring Micronuclei	6
Slide Analysis Statistical Evaluation	
Results Criteria for a Valid Test	
CONCLUSION	7
REFERENCE	7
TABLES	
QUALITY ASSURANCE STATEMENT	
COMPLIANCE STATEMENT	16

Micronucleus Test (MNT)

PH 309-SU-001-86 Germall II

SUMMARY

Doses for the Micronucleus Test on Germall II were selected from the previously reported results of an acute oral toxicity study in mice on Germall II done at Pharmakon Research International, Inc. In discussion with the sponsor, the doses selected were 1200, 2000 and 2800 mg/kg.

In the Micronucleus Test, nine groups of ten animals (5 males and 5 females/group) were given single doses of Germall II in 0.25% methylcellulose (0.25% MC) by oral gavage at 1200, 2000 or 2800 mg/kg and sacrificed at 30, 48 or 72 hours. Similar groups, administered the vehicle control, 0.25% MC were evaluated concurrently at each sacrifice interval. An additional group of ten animals (5 males and 5 females) was administered cyclophosphamide (CP) in 0.9% saline at a dose of 60 mg/kg and sacrificed at 30 hours, serving as the positive control. Slides were prepared from the bone marrow of the femora and stained. Coded slides were scored for the number of polychromatic erythrocytes (PCE) with micronuclei in 1000 PCE/animal. The ratio of polychromatic to normochromatic erythrocytes (NCE) per 1000 erythrocytes was determined for each animal.

The results for test article, Germall II, were negative in the Micronucleus Test at dose levels of 1200, 2000 and 2800 mg/kg at all of the time intervals evaluated. These findings are based upon the inability of the test article to produce a statistically significant increase in the number of micronuclei in 1000 polychromatic erythrocytes per animal in the treated groups versus the vehicle control groups.

.

STUDY DESCRIPTION

Sponsor:

Sutton Laboratories

Chatham, New Jersey 07928

Study Number:

PH 309-SU-001-86

TEST ARTICLE

The test article, Germall II, Lot # GT-152, was received by Pharmakon Research International, Inc. on July 24, 1986 in a plastic bag and the physical description of the test article upon receipt was a white powder. Normal precautions were used in handling the test article. All documentation supplied by the sponsor concerning stability and purity of the test article was the responsibility of the sponsor. Information as to the stability, purity, expiration date and other technical aspects of the test article was recorded in the sponsor's file. For the purposes of this study, the test article was stored at room temperature in the container received from the sponsor. All required dose levels were made with 0.25% methylcellulose on the day of administration. At the time of testing the test article was described as a white powder. There was no apparent change in the physical state of the test or control articles during the assay. Details of the test article preparation are contained in the Methods and Materials section of this report. Dosing solutions were used within two hours of preparation. Samples of the *test article/vehicle solutions were sent to the sponsor for analysis, along with a sample of the vehicle control.

Date Micronucleus

Test Initiated:

October 21, 1986

Date Micronucleus

Test Completed:

November 21, 1986

Sponsor's Study

Monitor:

Grover Vernon Foster, Jr., Ph.D.

Pharmakon's Study

Director:

Ruth M. Sorg, M.S. (Hyg.), Pharmakon Research

International, Inc.

Technical

Nancy Gongliewski, Nira Madison,

Performance:

Susan M Lucenti, B.S., and Ruth M. Sorg, M.S. (Hyg.)

Notebook

Reference:

Notebook #1123, pages 88-131 (Study)

Good Laboratory Practices Statement: This study was conducted in compliance with the Good Laboratory Practice Regulations for non-clinical laboratory studies as developed by the U.S. Food and Drug Administration (Code of Federal

Regulations, Title 21, part 58 revised as of April 1, 1980), as well as the U.S. Environmental Protection Agency (EPA) as stated in the Federal Register, Vol. 48, No. 230, Tuesday, November 29, 1983 as well as the Organisation for Economic Co-operation and Development Guidelines for Testing Chemicals (OECD), ISBN 92-64-12221-4, adopted by the council at its 535th meeting on 12th May 1981. There were no significant deviations from the GLP Regulations which affected the quality or integrity of the study. Q.A.U. findings derived from the inspection(s) during the conduct of this study and from the audit of the final report are documented and have been provided to the study director and the test facility management.

Records Maintained: All correspondence pertinent to the study between the sponsor and Pharmakon Research International Inc., protocol, amendments to the protocol, raw data, test substance weight or volume, dispensation reports, quality assurance reports, the final report as well as microscope slides scored in the study are maintained in the Pharmakon Research International, Inc. Archives.

Test Facility Standard Operating Procedures: The methods utilized in this study are maintained in appropriate SOPs at Pharmakon Research International, Inc. and include SOPs PH-309, PH-007, PH-010, PH-020, PH-516, PH-545, PH-562 and PH-569.

PURPOSE

The purpose of this assay was to evaluate the potential of Germall II to induce micronuclei in mice pretreated by oral gavage with the test article. The Micronucleus Test detects in vivo damage to the chromosomes or mitotic apparatus by determining the presence of micronuclei in the polychromatic erythrocytes (PCE) in the bone marrow of mice. During development of an erythrocyte, the nucleus of the erythroblast is extruded and acentric fragments or lagging chromosomes may remain in the cells and become micronuclei. The cell then proceeds through a transient stage, the polychromatic erythrocyte which stains a bluish color as compared to the pink of the more mature normochromatic erythrocytes. Since micronuclei arise from chromosome fragments or chromosomes that are not incorporated into daughter nuclei at the time of cell division, the assay detects both clastogens and agents that affect the spindle apparatus(1).

Justification of Test System: Mice have historically been used in the Micronucleus Test and have been shown to exhibit micronuclei indicative of chromosome breakage(2) or lagging chromosomes. Oral administration was chosen as an acceptable alternative route to the IP route and more closely approximates the anticipated route of human exposure.

METHODS AND MATERIALS

Preparation of Control and Test Articles: Test article, Germall II, was weighed and diluted with 0.25% methylcellulose, Lot # 705259, [supplied by Fisher Scientific] (prepared in deionized water at Pharmakon Research International, Inc.). Good solutions were obtained and maintained at all levels evaluated utilizing a magnetic stir plate. The positive control, cyclophosphamide, was dissolved in 0.9% saline (Lot # 83-701-DM-01; Abbott Laboratories) and administered at 10 ml/kg at a dose of 60 mg/kg of body weight. Test article, Germall II, was administered at a dose volume of

10 ml/kg in the Micronucleus Test. The test article and positive control solutions were prepared fresh and dosed within two hours of preparation. There were no impurities expected to have been present in the vehicle control which would have affected the outcome of this assay.

Positive Control Article:

Cyclophosphamide, Lot # 114F-0393 Source: Sigma Chemical Company

Dose Selection: Doses were selected for evaluation in the Micronucleus Test based on the previously reported results of an acute oral toxicity study in mice on Germall II done at Pharmakon Research International, Inc. In discussion with the sponsor, doses selected for evaluation in the Micronucleus Test were 1200, 2000 and 2800 mg/kg.

MICRONUCLEUS TEST

Treatment Procedure (3,4): Seven week old CD-1 mice (male and female) were used in the study and supplied by Charles River Laboratories, Wilmington, Massachusetts. Animals were acclimated to laboratory conditions for five days prior to initiation of the assay. The albino mice were randomized by body weight and assigned to groups by use of a random number table and ear tagged. Initial body weights for the males ranged from 26-31 grams and females from 23-29 grams. Mice were housed five (5) per cage according to sex and dose group in stainless steel wire mesh cages in accordance with the "Guide for the Care and Use of Laboratory Animals" of the Institute of Laboratory Resources, National Research Council. Waste material was removed three times per week. Throughout the study, animals were fed Wayne Rodent Blox and fresh tap water was also available ad libitum. Water is monitored for contaminants at periodic intervals and the results kept on file at Pharmakon Research International, Inc. No contaminants in the food and water were expected to have been present to interfere with the outcome of the study. The experimental design(5) for the Micronucleus Test was as follows:

	, , , , , , , , , , , , , , , , , , ,	Animal	s per sacrifice	time	
Group	Dose	30 hrs.	48 hrs.	72 hrs.	
0.25% methylcellulose	10 ml/kg	10	10	10	
Germall II	1200 mg/kg	10	10	10	
Germall II	2000 mg/kg	10	10	10	
Germall II	2800 mg/kg	10	10	10	
Cyclophosphamide	60 mg/kg	10	•••	***	

The test article was administered in single oral doses to nine groups of ten animals (5 males and 5 females/group) at 1200, 2000 or 2800 mg/kg at 10 ml/kg which were sacrificed at 30, 48 and 72 hours. Concurrently cyclophosphamide in 0.9% saline, the positive control, was administered by oral gavage to mice (5 males and 5 females) at a dose of 60 mg/kg. Thirty hours after treatment, the positive control animals were sacrificed. Groups of ten animals (5 males and 5 females) were administered the vehicle control by oral gavage at

¹PH 403-SU-001-86, October 14, 1986

10 ml/kg and sacrificed at 30, 48 and 72 hours. The time of sacrifice and cell harvest were determined from the time of treatment. All animals were sacrificed by cervical dislocation and their femora removed.

Pharmacotoxic Effects of Treatment: Animals were observed for mortality and pharmacotoxic signs immediately after dosing and at 4, 24, 48 and 72 hours after dose administration when applicable.

Animals administered Germall II at 1200 mg/kg exhibited no signs immediately after dosing. At 4, 24, 48 and 72 hours one or more animals exhibited decreased body tone. Abnormal gait was also observed occasionally at 4 and 24 hours.

At 2000 mg/kg decreased body tone was observed in several animals at all observation times. Abnormal gait was also observed in six males and three females at 24 hours.

At 2800 mg/kg decreased body tone was observed in several animals at all observation times. Approximately two-thirds of the animals at this level also exhibited abnormal gait at 4 and 24 hours. Additional signs observed at this level included vocalization to the touch in two females and one male at 4 hours, and decreased activity in two males at 4 hours.

At 2800 mg/kg, a total of three animals (all males) died during the in vivo phase of the study. One male (# 4222 in the 72 hour sacrifice group) died by 7 hours after dose administration. Gross necropsy findings for this animal indicated fluid filled, distended intestines which were dark red in color. The glandular section of the stomach contained hemorrhogic areas and was distended and the stomach was filled with clear fluid. By 24 hours two additional males were dead (# 4184 in the 48 hour sacrifice group and # 4225 in the 72 hour sacrifice group). Gross necropsy finding for # 4184 revealed distended intestines filled with red fluid and a distended stomach filled with clear fluid. The glandular section of the stomach was red in color and contained hemorrhogic areas. Gross necropsy of male # 4225 revealed a distended stomach filled with a clear fluid, and the glandular portion of the stomach was red in color. The lungs were also red in color.

No signs were observed in animals administered the positive or vehicle controls.

Slide Preparation: Both femora of each individual animal were opened carefully at the proximal end with a scissors until a small opening to the marrow canal became visible. A 1 ml tuberculin syringe filled with approximately 0.2 ml fetal bovine serum was inserted into the bone and the bone marrow was gently flushed (to assure maximum dispersion) into 1.0 ml of fetal bovine serum in a 3 ml conical centrifuge tube. The femora were flushed with fetal bovine serum until all the marrow was out and the bone appeared almost transparent. If necessary, the distal ends were opened and flushed. Bone marrow suspensions from both femora of each individual animal were pooled and treated as a single sample for slide preparation. The suspension was

centrifuged at 1000 rpm in a Sorvall RC-5 centrifuge with an HS-4 head for five minutes. The supernatant was removed leaving a small amount of fetal bovine serum with the remaining cell button. The button was mixed with a pasteur pipette to assure a homogenous mixture. A small drop of the mixture was immediately placed near the frosted end of a glass microscope slide previously cleaned in absolute ethanol and pulled behind a clean slide at a 45° angle. The slides were quick dried on a slide warmer set at approximately 56°C. Following preparation of the smears, they were dipped in absolute methanol and allowed to air dry.

Staining: The slides were stained according to the following procedure:

- a) Fix in absolute methanol 5 minutes and air dry.
- b) Remove metallic film from surface of Giemsa working solution (5% Giemsa in pH 6.8 phosphate buffer solution) using a paper towel.
- c) Stain 20 minutes in Giemsa working solution.
- d) Rinse twice. The first rinse is in deionized water adjusted to pH 4.0 to 4.5 and the second rinse in deionized water adjusted to pH 7.0.
- e) Clean back of slide with absolute methanol.
- f) Dry on 56°C slide warmer.
- g) Clear in xylene.
- h) Mount in Permount with cover glass.

Coding of Slides: Slides were coded randomly by study number and number designation. The code was kept on a separate sheet in the sponsor's file until the slides were evaluated. Following evaluation, the slides were decoded and the code sheet was placed in the notebook. The coding of the slides was carried out by an individual not involved in the actual scoring of the study.

Criteria for Scoring Micronuclei: Micronuclei are uniform, darkly stained, typically round bodies in the cytoplasm of PCE. Occasionally, micronuclei appear almond or tear drop shaped. Inclusions in PCEs which were reflective, improperly shaped or stained, or which were not in the focal plane of the cell were judged to be artifacts and were not scored as micronuclei. Cells containing more than one micronucleus were only scored as one micronucleated PCE.

Slide Analysis: The slides were screened for good preparation, i.e. well spread, undamaged, perfectly stained. One thousand (1000) PCE per animal were counted for the presence of micronuclei. The data were expressed as the number of micronucleated PCE versus total normal PCE in 1000 total PCE per animal (Tables 1, 2 and 3).

A total of 1000 polychromatic and normochromatic erythrocytes (NCE) was also counted per animal. These data were expressed as the ratio of polychromatic erythrocytes to normochromatic erythrocytes (Tables 4, 5 and 6). For each group of ten animals designated in each dose group (Tables 1-6), male numbers 1-5 represent the first to the fifth male. Female numbers 6-10 represent the first to the fifth female in each respective group.

Statistical Evaluation: Assessment of a test article as positive is based upon its ability to produce a statistically significant increase in the number of micronucleated polychromatic erythrocytes as compared to the vehicle control. One-tailed t tests were used to make pairwise comparisons between each treatment group and its concurrent vehicle control for statistically significant increases in the number of micronucleated PCE. The ratio of polychromatic to normochromatic erythrocytes was also calculated based on 1000 erythrocytes for each animal. The proportion of polychromatic erythrocytes per 1000 erythrocytes per animal was evaluated by pairwise t tests after an arcsin transformation was performed. Statistical significance was judged at $p \le 0.05$ and $p \le 0.01$ levels. All comparisons were made for each sacrifice time separately comparing treated groups versus the vehicle control group.

Results: No statistically significant increases in the incidence of micronucleated PCE were detected in animals treated with Germall II at any of the sacrifice times evaluated.

A statistically significant elevation in the PCE/NCE ratio was detected in animals administered Germall II at 2800 mg/kg and sacrificed at 72 hours (p \leq 0.05). The significance of elevations in this ratio is unclear.

Animals treated with the positive control gave a statistically significant increase in the incidence of micronucleated PCE ($p \le 0.01$) and a statistically significant ($p \le 0.05$) depression of the PCE/NCE ratio.

Criteria for a Valid Test: If the spontaneous rate of micronuclei in the polychromatic erythrocytes is less than 0.5% and the positive control is statistically greater (p \leq 0.05) than the spontaneous and at least seven animals per group survived the treatment, the results will be deemed acceptable. This study fulfilled the criteria of a valid test.

CONCLUSION

The results for test article, Germall II, were negative in the Micronucleus Test at dose levels of 1200, 2000 and 2800 mg/kg of body weight administered in single oral doses with sacrifice times of 30, 48 and 72 hours. These findings are based upon the inability of the test article to produce a significant increase in the incidence of micronuclei per 1000 polychromatic erythrocytes per animal in the treated groups versus the vehicle control groups under the conditions of this assay.

REFERENCE:

- 1. Heddle, J.A., M. Hite, B. Kirkhart, K. Mavournin, J. T. MacGregor, G.W. Newell and M.F. Salamone. Induction of Micronuclei as a Measure of Genotoxicity. A Report of the U.S. Environmental Protection Agency Gene-Tox Program, 1983, Volume 123, pages 61-118.
- 2. Schmid, W., The Micronucleus Test, Mutation Research, 31 (1975) 9-15.

- 3. EPA New and Revised Health Effects Test Guidelines, Federal Register Vol. 50, No. 188, Friday, September 27, 1985.
- 4. Organisation for Economic Co-operation and Development Guidelines for Testing Chemicals (OECD), ISBN 92-64-12221-4, adopted by the council at its 535th meeting on 12th May, 1981.
- 5. Salamone, M., J. Heddle, E. Stuart and M. Katz. Towards An Improved Micronucleus Test, Mutation Research 74 (1980) 347-356.

٠ •

Table 1
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86

Micronucleated PCE/1000 Polychromatic Erythrocytes/Animal

		ntrols	30 hour sacrifice			
Animal Number	0.25% MC			Germall II		
Male	10 ml/kg	0.5 mg/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg	
1	3	44	1	2	1	
2	0	24	0	0	0	
3	2	93	1	0	2	
4	2	27	1	0	2	
5	0	17	0	1	11	
Female		·				
6	1	19	5	4	0	
7	1	26	3	2	3	
8	1	24	1	1	1	
9	3	30	2	1	1	
10	11	50	0	00	0	
Mean ±S.D.	1.40±1.07	35.40±22.76	1.40±1.58	1.10±1.29	1.10±0.99	
t value	· -	4.719**	0 ,	0.565	0.647	

^{**} Denotes statistical significance at $p \le 0.01$.

Table 2
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86
Micronucleated PCE/1000 Polychromatic Erythrocytes/Animal

	Controls	48		ce
Animal Number	0.25% MC		Germall II	
Male	10 ml/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg
1	3	1	0	0
2	2	2	3	0
3	0	3	1	2
4	1	3	0	Dead.
55	2	1	3	3
Female		·		
6	1	1	1	2
7	1	1	3	1
8	1	o	0	5
9	. 0		1	1
10	0	0	1	0
Mean ±S.D.	1.10 ± 0.99	1.20 ± 1.14	1.30 ± 1.25	1.56 ± 1.6
<u>t</u> value	-	0.209	0.395	0.732

Table 3
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86

Micronucleated PCE/1000 Polychromatic Erythrocytes/Animal

	Controls	7:	hour sacrifi	.ce			
Animal Number	0.25% MC		Germall II				
Male	10 ml/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg			
. 1	o	4	1	1			
2	1	o	2	Dead			
3	2	o	0	0			
4	4	1	1	0			
5	0	0	0	Dead			
Female							
· 6	1	0	1	o			
7	o	1	2	1			
8	0	2	1	1			
9	1	. 0	0 1				
10	1	0	1	0			
Mean ±S.D.	1.00 ± 1.25	0.80 ± 1.32	1.00 ± 0.67	0.38 ± 0.5			
t value	***	0.348	O	1.322			

Table 4
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86

Ratio of Polychromatic Erythrocytes to Normochromatic Erythrocytes in 1000 Erythrocytes/Animal

	Co	ntrols	30 hour sacrifice				
Animal Number	0.25% MC	CP(30 hr.)		Germall II			
Male	10 ml/kg	60 mg/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg		
1	0.429	0.984	1.057	0.828	0919		
2	1.469	0.869	1.257	0.984	1.008		
3	0.639	0.634	1.283	1.681	1.222		
4	4 0.957 0.672			1.551	1.375		
5	1.825	0.603	0.541	1.611	1.404		
Female							
6	1.353	1.183	2.597	2.145	2.436		
7	1.882	1.137	2.289	1.294	1.273		
8	1.174	0.876	2.831	1.857	2.030		
9	1.481	1,123	1.169 1.415		1.625		
10	1.710	1.165	1.809	2.401	1.336		
Mean ±S.D.	1.29±0.49	0.92±0.23	1.58±0.76	1.58±0.48	1.46±0.46		
t value ^a	-	2.243*	0.451	0.918	0.536		

^{*} Denotes statistically significant depression at $p \le 0.05$.

t values are derived from comparisons between groups using the arcsin transformed value for the proportion of PCE for each animal and not from the tabulated valued for ratios given in this table.

Table 5
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86

Ratio of Polychromatic Erythrocytes to Normochromatic Erythrocytes in 1000 Erythrocytes/Animal

	Controls	48		<u> </u>			
Animal Number	0.25% MC		Germall II				
Male	10 ml/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg			
1	1.232	1.262	0.908	1.571			
2	1.433	1.874	1.128	1.146			
3	1.639	1.500	1.415	1.907			
4	1.778	2.096	1.410	Dead			
5	2.106	2.145	1.174	1.506			
Female				·			
6	1.273	1.358	1.551	1.632			
7	1.193	1.793	2.086	1.747			
8	1.558	1.653	1.445	1.392			
9	2.247	1.985	1.364	2.096			
10	1.564	1.959	1.488	1.564			
Mean ±S.D.	1.60 ± 0.36	1.76 ± 0.31	1.40 ± 0.31	1.62 ± 0.28			
t value		1.144	1.413	0.204			

a t values are derived from comparisons between groups using the arcsin transformed value for the proportion of PCE for each animal and not from the tabulated values for ratios given in this table.

Table 6
Micronucleus Test
SUMMARY DATA

PH 309-SU-001-86

Ratio of Polychromatic Erythrocytes to Normochromatic Erythrocytes in 1000 Erythrocytes/Animal

	Controls	72	hour sacrifice	
Animal Number	0.25% MC		Germall II	
Male	10 ml/kg	1200 mg/kg	2000 mg/kg	2800 mg/kg
1	1.294	1.398	1.770	1.237
2	0.912	1.242	1.353	Dead
3	1.959	1.294	0.838	0.912
4	1.070	1.053	1.165	1.232
5	0.949	1.262	1.506	Dead
Female				
6	1.732	1.463	0.988	2.344
7	1.740	1.415	1.571	2.759
8	0.695	1.045	1.469	2.322
9	1.179	1.252	1.899	2.300
10	1.427	1.882	1.475	2.344
Mean ±S.D.	1.30 ± 0.41	1.33 ± 0.24	1.40 ± 0.33	1.93 ± 0.6
t value	4 5>	0.534	0.736	2.137*

^{*} Denotes statistically significant elevation in PCE/NCE ($p \le 0.05$).

a t values are derived from comparisons between groups using the arcsin transformed value for the proportion of PCE for each animal and not from the tabulated values for ratios given in this table.

WAVERLY, PENNSYLVANIA 18471

PHONE (717) 586-2411

QUALITY ASSURANCE UNIT STATEMENT

Study	Direc	ctor:	Rut	h M.	Sorg											
	This s	study	was	condu	icted	in	comp:	liance	e with	the	Good	Lab	orato	ory P	ract	ice
Regul	ation	s. Ti	ne Qu	ality	Asst	ırar	ice Ui	nit co	onduct	ed tl	ne in	spec	tions	lis	ted	
below	and :	report	ted t	he re	sults	to	the	study	dire d	ctor	and	to 1	anage	ment	on	the

The following inspections were performed:

Study No.: PH 309-SU-001-86

dates indicated.

Interval	Date
In Vivo Preliminary Phase	10/21/86
Cell and Slide Preparation Phase	10/22/86
Reporting Phase	11/26/86

Date QAU Report Issued

To Study Director To Management 11/26/86 11/26/86

1/26/81 Date

Quality Assurance

WAVERLY, PENNSYLVANIA 18471

PHONE (717) 586-2411

Compliance Statement

This study was conducted in compliance with the Principles of Good Laboratory Practice (GLP) as promulgated by the following regulatory agencies:

U.S. Food and Drug Administration, as stated in the Code of Federal Regulations, Title 21, Part 58, revised as of April 1, 1980.

U.S. Environmental Protection Agency as stated in the Federal Register, Vol. 48, No. 230, Tuesday, November 29, 1983.

Organization for Economic Co-operation and Development Guidelines for Testing Chemicals (OECD), ISBN 92-64-12221-4, adopted by the council at its 535th meeting on 12th May, 1981.

Study	No.:_	ÞН	309-SU-001-86	
-------	-------	----	---------------	--

*To the best of my knowledge, the study was conducted in accordance with applicable Good Laboratory Practice regulations; there were no deviations from these regulations that impacted on study conclusions."

December 10, 1986

Notebook	#	1/23

Genetic Toxicology Study Assignment

Study Number: PH 309-50-001-86 Protocol Available (yes) no (circle)
Study Description: Cytogenetic assy-Muconceleus Vert
Study Director: Ruck M. Sorg M.S. (1449) PRi
Technical Performance: Nancy bongliewski, Nira Madison, Susan
M. Lucerti BS. and Reck, H. Eng M.S. (Hog.)
Standard Operating Procedure: 14309
sponsor: Sutton Laboratries Inc
Chathen, New Jersey 07928
Monitor: Sune V. Forter, Jr., Pl.D.
Test Article: Sumill II Ort Ro. GT-152
Physical Description: That Youde
Date of Study Assignment from Quality Assurance: 10-9-86
Study Initiation: 10-21-86
Study Completion: //- 2/- 86
Solubility: Soluble in 0.25% medylcellulose
Sponsor's Suggestion? <u>(ves)</u> no (circle)
Solubility Assay Conducted: yes (no) (circle)
Vehicle (Solvent): 0.25% mithyleellulal
Preliminary Toxicity Form #:
comments: Milyfulle low Joh #705259 - Compound prep 6,25% MC
1.25 gm meitybull xx xxx 10/17/86
500 ml DH20) Expiration dots 10/31/86
Study Director: Lutt M. Sorg Date: 11-21-86
Page XX
CHTRMS (6)

Notebook	*	1123	
----------	---	------	--

TITLE: Cytogenetic Assay - Micronucleus Test STUDY NO.7H 309-5U-001-85
Sponsor: Suttor debotories in Date Initiated: 10-21-86 Test Article: Sumall II Date Terminated: 11-21-86
Description: Thirte Poorder
Purpose: To evaluate the potential of the test article to induce micronuclei when administered to mice.
Dose Levels Evaluated: Based on the acute are toricity sludy in mice done at PRI, and in discussion with the sponder, dress selected for evaluation were 1200, 2000 and 2800 mg/kg.
Sacrifice Times: 30, 48 and 72 hours
Vehicle: 0.25% methylellulose Lot # 705259 Volume Administered: 10 ml/by Route of Administration: Oul Fasting: Anna dim Till 44 hand 1000 documents.
Food returned immediately of the dowing 6:30 # 40 30 48,7
Species: Mouse Animal P.O. # 041585 F Tox Date Rec'd: 10 16/8 6 11.25.86 Age at initiation: 7 weeks No. of Animals per group: 10 Males 5 Females 5 Randomization: By weight and random number Tobes,
Animal Identification: For togged and steel Cages marked.
Food Lot # PO 9166 Date Rec'd: 10-7-86 Type: Wayne Rodent. Animal Scale #: Sartonius 8 Calibrated: duily Study Room # 70x II
Light Cycle Checked: 10/21/86 245 12 hrs. light, 12 hrs. dark 10/22/86 245 10/23/86 245 Temperature and humidity: brusantly monitored and recaded with a Honeywell Temperature and humidity: brusantly monitored and recaded with a Honeywell
Temperature and humidity: Constantly monitored and recaded with a Honeywell Relative Humidity and Temperature Bearder trouble 1, week of 11/21/10- 19/20/20 of 19/20/20 Felal borone Surem: The description of the properature of the strength of the strength of the properature of the strength of the stre
Felal borone Surum: 3ch proper both to 300504 The stigator Date The stigator Date Investigator Date Investigator Date The stigator Date

Cytogenetic Assay	- Micronucleus Test	STUDY NO \$14309-50-001-8
: Sutton Judos ticle: Germell ption: Hato F	Date Ir	nitiated: 10-21-86 Terminated: 11-21-86
	TEST ARTICLE PREPAR	RATION Germall II Lt # GT-13
	g bermall I ge 1	to 20 ml with 0.25 % methylcellula
000 mg/g @ 10 ml/	my German II go	e to 20 ml with 0.25% methylcella
nd Preparation Scale	: # Sartorius I 1602 mp	Calibrated: 10-21-86
percential grade percent of the solution of th	ind to suspend the country and common and common and common and common and common and continuously for a proper of the property of the propert	as to the oppropriate volume with 25.
all levels eva	lusted (Outh M. Son 11-21-86 Director Date
	sticle: Sermally ticle: Sermally tion: He to 4 to may 1/4 @ 10 ml 2400 m 4000 800 mg/hy @ 10 ml 5600 5600 The startile were 25% me was and principle of the service of the servi	TEST ARTICLE PREPA TOO my //g @ 10 ml//g -> 120 mg/ml 2400 mg bermall II ga 4000 mg bermall II ga 4000 mg bermall II ga 800 mg//g @ 10 ml//g -> 200 mg/m 4000 mg bermall II ga 5600 mg bermall II ga 1602 mg 1602 mg 155: Test article weighed in mortar (for a preparation south mixture and immediately graduated explinate and immediately solution south mixture continuously than forbeing. Mixture continuously than forbeing Mixture continuously ing observe phase eus no-21-56 and 22 ing observe phase eus no-21-56 and 22 ing observe phase eus no-21-56 and 22 ing observe phase eus no-21-56 ing preparation formed: A solution Investigation formed: A solution

CHTRMS(1)

TEST ARTICLE PREPARATION - POSITIVE CONTROL Cyslophraphamide (CP) @ 60 mg/kg @ 10 me/kg -> 6 mg/m 6. #338 gm viol TCP pus 6. 6430 gm viol 10-21 0.0908 gm CP = 90.8 mg CP 90.8 mg CP Gry /ml - 15.1 ml 0.9% Soline. CP Litt 114F -0393 Segmin Clemical Co. 0.9% Soline total 83-70/-DM-01 abbott Laboratories North chargo Ellinous Compound Preparation Scale & Sutorius I Calibrated: 10/21/86							
Description: While powder TEST ARTICLE PREPARATION - POSITIVE Control Cyslophraphamide (CP) @ 60 mg/kg @ 10 ml/kg - 7 6 mg/m 6. #338 gm viol TCP pus 6. 6. 430 gm viol 10. 1 0. 990 8 gm CP = 90.8 mg CP 90.8 mg CP 10. 1/4 F - 0393 Segmin Clemetel Co. 0. 91, Solve fot \$ 83-70/-DM-01 Whoth fabrications Now 1602 mg Compound Preparation Scale & Southins I Calibrated: 10/21/86 1602 mg Comments: CP wlighed in three glass vial and diluted to appropriate with 0.9% Saline in 50 ml table. Samples sent: yes no Date sent: N/A Dose preparation formed: Solution Tanna Singliveske M2/86 Threstigator Date Dose preparation formed: Solution	CITLE:	Cytogenetic Assa	y - Micronucleu	s Test	STUDY NO.	PH309-S	11-001-86
Cyslophraphamide (CP) @ 60 mg/kg @ 10 ml/kg -> 6 mg/m 6. #338 gm violate pus 6. 6430 gm viol 0. 0908 gm CP = 90.8 mg CP 90.8 mg CP 15.1 ml 0.9% Soline CP Let # 114F-0393 Segmin Chemical Co. 0.91, Solini Lota 83-70/-DM-01 abbott Laboratories North charge Allinous Compound Preparation Scale # Soutories I calibrated: 10/21/86 Comments: CP wheelight in three glass vial and delated to appropriate with 0.9% Soline in 50 ml tube. Samples sent: yes no Managements of the Solitor o							
Cyslophraphamide (CP) @ 60 mg/kg @ 10 ml/kg - 7 6 mg/m 6. 4338 gm viol rcP pus 6. 6. 430 gm viol 10. 10 0. 0908 gm CP = 90.8 mg CP 90.8 mg CP 15. 1 ml 0.9% Saline CP fit # 114F - 0393 Segmin Chemical CO. 0.9% Saline fot # 83-70/-DM-01 Abbott fabratories North charge fillinous Compound Preparation Scale # Soutrius I Calibrated: 10/21/80 1662 mg Comments: CP wlighed in twelf glass vial and diluted to appropre where with 0.9% saline in 50 me tube. Samples sent: yes 60 Date sent: N/A Dose preparation formed: Solution	Descrip	tion: White	rowder			,	
6.430 gm vial 6.6430 gm vial 6.6430 gm vial 6.6430 gm vial 70.8 mg co 70.8 mg co 6 mg Ine 15.1 ml 0.9% Saline. Compound Preparation Scale & Soutonis I Calibrated: 10/21/86 Comments: Of weighed in three glass vial and deleted to appropriate with 0.9% Saline in 50 me tube. Samples sent: yes no Date Souton Date Dose preparation formed: Solution 10.2 mg Tang 1/2 inglinish 1/31/86 Date Date		•	TEST ARTIC	LE PREPARATIO	on - Ko	sitive	Control
6.6430 gm VIII 0.0908 gm CP = 90.8 mg CP 90.8 mg CP 15.1 ml 0.9% Saline. CP Let # 114F-0393 Segmin Clemical Co. 0.9% Saline Lots 83-701-DM-01 abboth Laboratories North Compound Preparation Scale # Southerins I Calibrated: 10/21/860 1602 mg Comments: CP wheeland in three glass vial and deluted to apprepre Noturne wash 0.9% Saline in 50 me tube. Samples sent: yes no Date Solution Threstigator Date Dose preparation formed: Solution	C	yslophraphan	ride (CP)	@ 60 mg/	g @ 10 ml	少一	omg/ml.
90.8 mg co Gray Inc. 15.1 ml 0.9% Saline. Of Let # 114F-0393 Segrin Clemenil Co. 0.9% Saline Fot # 83-70/-DM-01 Wboth fabratories North Oncompound Preparation Scale # Soutories I calibrated: 10/21/86 1602 mg Comments: Of wheghed in tweet glass vial and diluted to apperform with 0.9% Saline in 50 me tube. Samples sent: yes 60 Date Solution Tanna Congliciant 1/21/86 Threstigator Date Date		<i>6.</i> 6	,430 gm ve				
Compound Preparation Scale & Soutonius I Calibrated: 10/21/86 Comments: Up whighed in three glass vial and deleted to appropri Polume with 0.9%. Saline in 50 me tube. Samples sent: yes no Many Junghiush 1/21/86 Threstigator Date Date Dose preparation formed: Solution	رها	21-10	0908 gm CP	" = 90.8 mg	. CP		
O.9% Salvie Fot # 83-701-DM-01 abbott fabrications North Compound Preparation Scale # Southerins I calibrated: 10/21/80 1602 mp Comments: Of whighed in three glass vial and deluted to appropri where with 0.9% saline in 50 me tube. Samples sent: yes no Date sent: N/A Threstigator Date Date			6 mg/me			aline.	
Compound Preparation Scale * Southhus I Calibrated: 10/21/80 1602 mp Comments: Of whighed in tweet glass vial and diluted to appropri Policine with 0.7% Saline in 50 me tube. Samples sent: yes no Date sent: N/A Dose preparation formed: Solution Calibrated: 10/21/80 The Threstigator Calibrated: 10/21/80 Thres	•	0.9% Salve Fot	-0393 S * 83-70/-	gran Cles DM-01	niel Co. Abbott Fo Chiera	louter Illin	es North
Samples sent: yes no Manay Jangharsh 1/21/86 Date sent: N/A Dose preparation formed: Solution			16021	1 <u>L</u> C.	alibrated:	10/21/80	
Samples sent: yes no Manay Jangharsh 1/21/86 Date sent: N/A Dose preparation formed: Solution	Comment	s: Of weighed	in three ge	has vial	and di	luted to	appropriate
Dose preparation formed: Solution	Λ	rolume wir	(0.1% Sall	70 in 50	me and	.	
Ruth M. Sorg 11-21-86 Study Director Date	Date se	nt: N/A		Manay Investigat	Jangli	wsk	11/21/80 Date
order //				Ruth Study Dire	M. Sorg		1-21-86 Date

Page 91

	14309-JU-001-06	10/21/8	11-21-86	1 @ 10 mills -> 6 milh	Observations: Immediate:	lat Awar	The summets no signs 11-01-06. The 10/21/86.	while he ight on a die the 1962 the										Mean: 35,400 £ 22,755	t values: 4719 ** 876 xm "/"/	The rich King were follows to
DOSE	STUDY NUMBER: F4 309-	Date Initiated:	Date Terminated: /	vel: 60mg/	20		ì	16	44	24	93	27	17	19,	216	24.	30	50.	11/20	
STUDY SHEET SINGLE DOSE		Date In	Date Te	Dose Le			ž	PCE	956	946	907	973	983	186	414	946	970	950	11/21/80	•
ı	it.					30 HE	Date of	Sacrifice			10/	/	da,		186				245 28-56-01	7
	eus Test	Zien.				TIME	Final Wt.	(B)	32	32	22	30	30	25	25	26	29	26	78-ce-01 Sma	10/2
	- Micronucleus	my	Z	Her)		M. LEAMPLE T	Time	admin.	7 84								>	9 15	11-12-17	. }
		Stab	milles	itarlou	. 1	73	- 1	admin.	29	30	٢٦,	. 29	,28	124	, 24	121	,28	126	They la	1
	TITLE Cytogenetic Assay	lutte	Au.	XX	/ /	of the fact of	Anitial Wt.	(aug.)	29	30	27	29	18	JY	24	16	28	24	Miller Ku	"."
	Cytog	3	rticle	ptions	·	(met	Sex		63	13	B	60	100	5	4	8	5	5		Dosed by:
	TITLE	Sponsor	Test Article:	Descriptions		DOSE:	Mouse	NO	10/2	4102	4103	4014	50/4	4106	4107	4108	4109	4110		Ğ

TITLE	Cytog	TITIE Cytogenetic Assay	1	Micronucleus	leus Test	STUDY	SHEET SINGLE DOSE STUDY NUMBER: //H	DOSE STUDY NUMBER	PH 309-50-001-86
Sponsor		litte	1/3	nator	24.2		Date Initiated:	tiated:	10/21/86
Test Articles	ticle	Sperme	20,00	77.	l i		Date Ter	Date Terminated:	11-21-86
Description:	ttone	26	testor	de			Dose Lavel:	1011	me the
						•	•		Observations, Immediate,
DOSE	100	_ 1	9 2	SAMPLE	TIME	30 Kours			18/ memals . no se me
Mouse	Sex	Initial Wt.	m]	,	Final Wt.	Date of	Jo ON	No. of PCE with Micropurie	4/40 pd: 10/10 animals no sugin
1////	E	30	,30	05 b	<u> </u>		166	3	24hropd: 10/10 no segiro 718 10/22/86
4//2	B	29	, 29		31	(0)	0001	0	
11/13	B	29	,29		31	/ ,	866	7	
6/14	R	29	57.		31		866	2	
5114	B	31	18'		32	100	0 001	0	
9/1/	of	15	127		38		666	/	
4117	01	35	57'		26		666	!	
8//4	5	26	, Z		28	98	666	/	
4114	9	þρ	KZ'	->	28		997	تح	
07/A	5	26	77'	7 23	33		999	/	Mean: 1.400± 1,074
		10 Jul 80	Whiley	NHL 10-21-86	RMS 10-22-84	02-85-01	11/21/84	11-11-56	t Values:
OQ	Dosed by:	.X: \(\)	M.	Jeli	,0) ~	121/52			
		<u> </u>	} \	1	_	_			Investigator Mending all 112116

11-24-86 Date

							STUDY	STUDY SHEET SINGLE DOSE	DOSE	
	TITLE	Cytog	TITLE Cytogenetic Assay - Micronucleus Test	ISAY - M	cronuc	leus Te	st		STUDY NUMBER	STUDY NUMBER: 14309-30-001-56
	Sponsor	£: .	the	2 L	abratries	ries		Date Initiated,	tlated:	10-21-16
	Test A	Test Articles	Sun	i ll	I			Date Ter	Date Terminated:	11-21-86
	Descri	Description	21 h	Leth	waler	_		Dose Lev	101: 1200 and	Dose Level: 1200 malls @ 10 ml/kg - 120 ms/mg
			`.						0	Observations: Immediate:
	DOSE	1200	1200male	4	SAMPLE TIME:	TIME	20 Kaue	7		10/10 Anomale. As exists 1846
_			Infilal	•		Pinal			No. of PCE	4 hood: 11. A month
	Mouse	X	wt.	m]	ml Time	¥.	Date of	No. of	with wiczenneje	4/6 of 5/6 1
, nemanin	1111	Ê			*			000	, /	13 1/2 1/2 mgm 10/21/gens
	177	_	37	15,	***	136		144		tone 4/5 p 24 4/5 a no sign of
gen en e	4122	B	7	ź		3/	9	1000	0	May sever wizzla

217	<u></u>
#/	
1.400	
Mean:	+ 72 1048.

78-17-11

527 01

27 PUS 10-22-86

me

077 DWL 10-01-51

Dosed by: /

10 AM

of

0

000

860

650

1000

3

995

497

666

2

'n

B

1/24

4126

3

13

666

Manes Lydund Mills Investigator Date

Investigator / Song / Study Director

-3

Page 95

	TITLE	Cytog	Cytogenetic Assay	1	- Micronucleus	leus Test	- 1	SHEET SINGLE	DOSE STUDY NUMBER	STUDY SHEET SINGLE DOSE STUDY NUMBER: 74309-30-01-86
		1 2	Littor	Labor	nator	, ea		Date In	Date Initiated:	11-71-16
	Test Articles	rticle	Stern	uels	N			Date Tel	Date Terminated:	11-21-86
	Description	ptioni	Ma	te You	well			Dose Le	val: Soom	Dose Level: 2800 mg/b C. 12 ml/ky -> 280 mg/mg
		,					÷		0	티
	OSE: C	2800	DOSE: 2800 mg/4.		SAMPLE	TIME:	30 hours	ع		150 45 4 no segno: 150 15 4 decended
			Initial			Final	,		No. of PCE	both tene por
	Mouse No.	Sex	Wt. (gm)	ml admin.	Time admin.	Wt. (gm)	Date of Sacrifice	No. of PCE	with Micronuclei	The sel. Vs & servered books tone
	14141	E	tr	221	KW //	38		666	/	450 almorn
<u></u>	4142	8	25	ر ځه		3/	1 07	1000	,0	tone abnormal gait 1/54 abnormal
•	4143		980	,29		30	/æ/	866	7 .	ma days no 10/21/84
		B	88	, 2F		38		866	7	almornal goit 1/50° almornal g
	4145	3	3,	, 31		32	/86	666	/	15 & devensed body Com abnow
	4146	t	tr	£e'		28		1000	0	abnowed gait 2/5 4 mbaigno No
	4147	5	موج	, 25		34	·	£66	3,	
	8514	6	the c	42,		کړه		999	/.	
	4149	f	57	. 25	1	40		999	/	
	4/50	6	18	3201	Kb v	38		1000	0	Mean: 1,100 ± 0,994
·			78-12-4 747	10-21-61	71-12-11 7114	18-te.w	puls 10-22-8C	12:136	ないた	t Values: 0,647
ı	ŭ	Dosed by:	J. J	Made	Leas	10/01	d d			Hand Longland h. 1121/2

SHEET BINGLE DOSE	174 309-50-001-86	10/21/86	11-21-86	we the	Observations: Immediate:	1/1. Enemado: no segno por 12	1. 10/10 no sugne on 0/01.	34/12/20 10/10 ms prom 70/0/23/Re		/						·	<i>*</i>	Mean: 1.100 ± 0,998 wars	t Values:	Nancy Gradien de 11/21/86	Egator /	Study Director (11-21-60	
DOSE	STUDY NUMBER	Date Initiated:	Date Terminated:	Dose Level: @ 10 ms			No. of PCE with	Micronuclei	B	В	0	,	7		. /	\	0	Q	11/21/26	-			
SHEET BINGLE		Date In	Date Te	Dose Le	•	6	No. of	PCE	465	998	1000	666	866	999	666	999	1000	1000	13/12/11	<u>.</u>		page 44	
STUDY					,	18 Hour	Date of	Sacrifice	-	0	/	\sim	76		3/	59			7.8/EZP1 :				
	eus Test	26		J		TIME:	Final Wt.	(gm)	34	.31	34	33	33	37	38	89	3/	24	18/EZ/01	25/12/0,			
	- Micronucleus	nel	77	rades		SAMPLE	Time	admin.	9 114								>	37 7 AH	W. 1.8	المرم	•		
	1 1	Sal	melle	y caxi		0 4	ml	admin.	,31	,28	,30	, 30	,30	52,	27'	77'	, 28	12	10/11/84	Jan J			
	Cytogenetic Assay	hittor	Les	Jil.		9	Initial Wt.	(m5)	31	28	36	30	30	58	76	26	38	77	An /21/84	y. V.	•		
	Cytog	Z.	rticle	ption	,	Z	Sex		B	03	E	B	60	4	5	7	4	6		Dosed by:			
	TITLE	Sponsor	Test Articles	Descriptions	•	DOSE:	Mouse	No.	4/5/	4152	4/53	4154	4155	4156	4157	\$5/7	b514	4160		ă			

						STUDY	STUDY SHEET SINGLE DOSE	DOSE	
TITLE	Cytog	Cytogenetic Assay		cronuc	Micronucleus Test			STUDY NUMBER	STUDY NUMBER: 74309-50-001-86
Sponsors	Z	lutton	2	ebouting	gar		Date In	Date Initiated:	10-21-66
Test Articles	rticle	the	malle	22.0			Date Ter	60	11-21-86
Description	ptioni	Whi	testo	weed			Dose Lev	101: 1200 mai	Dose Level: 1200 maller @ 10 miller - 120 malmil
	*								11
DOSE	1200	malka	<u>.</u>	SAMPLE 1	TIME	48 Hru	9		
House	Sex	Initials Wt.	mJ	Time	Final Wt.	Date of	No. of	No. of PCE	the pd: 150 46 / Callmornal good
No.		(gm)	admin.			Sacrifice		Micronuclei	1/2 & decreased tody tone 3/59
19/4	R	1 to .	12.	HV "	39		666	/	no signe 1/5 or Lecreased
4/62	EB	18	.31		73	14	866	8	oper fet
4163	B	49	129		33		497	3	alnormal gait 3/5 3 no puin
47/4	B	49	67.		33		466	")	15 female decreased borgs tone almomal gast 4/5g no supro
4/45	B	44	bx'		16	125	666	/	76 10/22/86. 48 horse 21/10 20 20 20 20 20 20 20 20 20 20 20 20 20
4/66	ot	750	72'		38		666	/	solvesting with the solvest
19/4	ot	E P	£8'		28	0)	666	/	
8911	5	770	12/6		38	90	1000	9	
4169	4	37	10	->	27		000/	9	
4170	4	25	35	10 94	26		1000	, 0,	Mean: 1,200 ± 1.135
		18-18-011 140	79-18-01 200	18-18-01	-ne 1923/86	725 19/23/82	78-12-11	11-11-86	t values: 0, 209
ă	Dosed by:	N. Mar	Ser	Lear	28/12/01	, En			Monday Merghandh 1124/84

TITLE		Cytogenetic Assay	- 1	Micronucleus	leus Test		STUDY SHEET SINGLE DOSE STUD	DOSE STUDY NUMBER	DOSE STUDY NUMBER: 14309-50-01-91
Rooman	1 2	1. 11.	1%	1 1 1			Data Initiated:	tisted	18-21-16
Test A	Test Article:	Ser	The Contract of the Contract o	27.77	464		Date Ter	Date Terminated:	11-21-82
Descri	Description:	H	the You	when		ľ	Dose Let	vel: 2000 my	Dose Level: 2000 and the Ore and the - 2 200 and the
							-	3	Observations: Immediate:
DOSE	2000	mall	3	SAMPLE TIME:	TIME	48 Kour	6		150 53 deleased both tone
		Inikial		3	Final	9	4	No. of PCE	11/2 1/49 AS 11.000 BUL
Mouse No.	X OX	wс. (gm)	mi admin.	rime admin.	ис. (gm)	Date or Sacrifice	NO. OI PCE	With Micronuclei	4his al 11 5 16 4 Desirange all free for
11.14	E	4.1	62.	10 98	31		1000	Q	4507 4/59 no sugar 200/21/82
4142	B	15	18,		33	101	466	ی	24 Mused: 5/500 abnormal gait 1/500
4173	B	650	62'		18	6	666	1	gast 2/5 4 abnormat gast declared
4/14	B	48	800		32	12,	7000	0	tehust yet is a mayor no open
4175	8	30	,30		33	12/	464	B	Lody tone 2/50 4/54 no again Noigh
4176	ot	25	.25		36		999	/	Refu.
4177	4	015	,25		38	18/	166	6	
8114	5	216 246	12,		38	3	1000	0	
4179	9	120 54110	21-86 102	\rightarrow	38		666	/	
4180	4	26	126	42 10 AM	38		999	_	Mean: 1300 ± 1,251
		94-12-01	14.12.01	78-18-01	19/23/18	18/52/0/	11-11-8	11-4-86	t values: 0, 395
Q	Dosed by:	y: Men	Mad	Mora	10/21/84	<i>\\</i>	•		Í
			2)				• • • • • • • • • • • • • • • • • • •		Investigator Date

NGLE DOSE	STUDY NUMBER: 14309- JU-001-06	Date Initiated: // // //	Date Terminated: 11-21-86	Dose Level: 2800 mg // (2.10 mg/h) -> 280 mg/m	Observations: Immediate:
STUDY SHEET SINGLE DOSE	TITLE Cytogenetic Assay - Micronucleus Test	Sponsor: Litter Laboratries Da	Test Article: Lymall II	Description HLXV Forder	

DOSE: 2800 mal	3800	malks	w)	SAMPLE TIME:		48 Hours			Mrs Tes harroand by tome
	7.68	Instial	-	£	Final	0.00	N 0.6	No. of PCE	1
No.	5	(gm2)	n.			-	PCE	Micronuclei	the pd: 15 Patroonel gad decusion
1814	w	وق	يځ.	11 SAH	33	101	1000	0	look tom 150° alnormal gait weakingto
4182	B	£ E	420		29	1221	1000	0	5/5 & almormal goit 1/3 & rotalyotted on tower, 1/5 & decreased body town
4.83	B	600	600'		3/	88	866	8	John Hotel H184 & Junger Stand
h81#	w	29	.29		1028	10/22/86			destanded year file (alea)
5814	63	620	620)		18	,	166	ئى	humber odes therein det
9814	0+	72	محر		28	101	8,66	B	Some feller (red) MM
4814	9	25	,25		35	12	666	./.	Lordy tone 4/5 & alnomal gait 1/5 4 1/
8816	01	350	jpi		27	/	995	5	48hopd 3/4 or 2/5 4 devicased booky
4189	7	0,35	,25	\rightarrow	27	18/	666)	tone 1/407 3/5-5 no segno 10,0/23/8
96/4	5	مرج	.25	11 AH	44	, ,	1000	0	Mean: 1.555 ± 1,666
		78-20-01	10-31-16	71-1× 01		28/EZ/01 18/EZ/61	11-21-86	11-21-86 11-21-8K	t Values: 0.732
							1		

Dosed by Mes Madein 10/21/86

Tank Hordinale 11/21/1
Investigator Date
Study Director

			- 1		+ 0 4 6 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	STUDY	SHEET SINGLE	DOSE STILLY NIMBER: 74, 210	Fr 200 - 511-001-81
TITLE	TITLE CYCOGENE	Cytogenetic Abbay	1 1	PICTORIACI	,		Date Initiated:	tisted:	4
Test A	Test Article:	" hen	2	7	28.2		Date Te	Date Terminated:	
Descri	Description.	The	to to	rode	3		Dose Lev	Dose Level: @ 10 ml	4/kg
۔	,				I	•			Observations: Immediate:
DOSE		(p	υ	SAMPLE TIME:	PIME:	72 Hours	/		10/2 Samme L. S.
		Ē	,	7	Final	9 0	300	No. of PCE	0
Mouse No.	X OX	(gm)	ml admin.	rime admin.	WС. (gm)	Date of	NO. OI. PCE	Wich Micronuclei	34hapd: 10/10 mo sugar Mes 10/22/82
1614	B		62'	9 AM	33		1000	0	28/52/01 Wormpus on 0/10/28
4192	8	28	, 28		98		<i>666</i>	/	find of 10 monders mid
4193	3	29	.23		78	101	866	B	
4/44	I .	30	,30		33	/42/	966	4	
4/95	3	30	,30		74	8/	7	9	
4196	ot	25	72'		28	90/	999		
4197	of	24	124		26		10001	Ó	
8614	d	25	52'		23		1000	0	
4198	or	26	77'	->	38		999	/	
4200	4	26	77,	HB 6	27		999		Mean: 1.600 ± 1.247
		28/22/01	10/21/84	11-12-01	17/24/14	10/24(0)	11-21.56	2-7-11	t Values:
	Dosed by:	"Wes	Mar	dean	12/01	R	•		Many March Mark
			<i>)</i>	١					Investigator data transfer pate

TITLE	Cytog	Cytogenetic Am	Aasay - Mi	- Micronucleus	leus Test	ıt		STUDY NUMBER	STUDY NUMBER: 74 389 JU - 0 01 - 2-6
Sponsors		utter	Lake	trata	رمم		Date In	Date Initiated:	78-17-01
Test Articles	rticle	: Serm	mell	TT,			Date Te	Date Terminated:	11-21-86
Description	otioni	P	ditast.	rade	7		Dose Le	vol: 1200 n	Dose Level: 1200 malk. @ 10 me/k - 2/20 and//5
•	, , ,						~		Observations: Immediate:
DOSE:	1400	V	" "	SAMPLE TIME:	TIME	72 Horn	, en		10/10 animale. no segas dot
Mouse	Sex	Ingelals Wt.	m	Time		Date of	No. of		4/100 pd: 1/5 or Lecreased body
Ož		(dn)	acmin.	admin.	(BB)	Sacrifice	PCE	Micronuclei	tion of the second of the seco
4201	B	3,5	,50	10 11	34		966	#	were 1150 deneased body ton
402	E	28	.28		31		1000	0	45 hope 1/50 1/57 decreasedo
4203	B	47	,27		3/	101	1000	9	tone 4/50 4/54 no sugno 70 Ms
4204	Co	68	62'		32	///	666	1	72he fd 2/50 1/4 polares
4205	B	36	,3º		32	186	000/	0	the 1/5 th squares in 1/4/
4206	9	70	77'		28		1000	9	
4207	9	45	,25		38		666	, l	
4208	0t	21	129		28		866	B	
42.09	40	970	77'	\rightarrow	30		1600	0	
17.10	4	tr	tr'	10 4.4			1000	0	Heans 0.806 ± 1.316
		14-17-91	11-12-4	98-18-01 780	to frythe	10/24/84	11-21-84	11-11-82	t Values: 0.348
Do	Dosed by	"This	M	ling	10/21/	A.			Dany Lingswicke 11/211
)	/ \)					はしたこ こうしゅうしゅう こうしゅうしゅう こうしゅうしゅう こうしゅうしゅう こうしゅうしゅう しゅうしゅう しゅうしゅうしゅう しゅうしゅう しゅう

			1			STUDY	STUDY SHEET SINGLE DOSE	DOSE	
TITLE	Cytog	Cytogenetic As	Assay - M	Micronucleus	leus Test	it		STUDY NUMBER	STUDY NUMBER: PH 3 39-50-01- FL
Sponsor	r:	utt and	- 17-	aboute	692		Date In	Date Initiated:	10-21-86
Test Article:	rticle	See	100.	72			Date Te	Date Terminated:	11-21-86
Descriptions	ptioni	The bu	toKo	when	Š		Dose Le	vel: 2000 and	Dose Level: 2000 and 1/2 P. 10 mulk - 200 malml
						•		0	Observations: Immediate:
DOSE: 20	200	Jewo	11/	SAMPLE	TIME:	72 Hour			3
		Initial	2		Final			No. of PCE	no sugge in remaining or and of arimals
Mouse No.	Sex	wt. (gm)	ml admin.	Time admin.	(gm)	Date of Sacrifice	No. of PCE	with Micronuclei	
4311	B	20	, 30	45 10 AM			666	1	Lody tone 4/503/57 no signs
4212	E	870	, 2F		33		86b,	8	24the pd: 1500 2/54 deveasedbroly
4213	B	470	62.		32	101	1000	0	bone 4/5 or 3/5 4 no sugin no 1/22/12
4514	B	3,	131		33	1 hz/	666	1	tone 15 or 2/57 decreased way
4215	B	41	150.		31	18/	1000	9	Williams of 3/-07 2/59 decremed book thou
9K#	8	37	74,		2.B		666	/	26/45/01 MM anjus in g-2/5 co 2/6
4217	8	A.E.	720,		28		866,	7	
448	ot	4/2	41%,		27		666	/	
4219	d	47	£2.	>	29		666	/	/
4220	4	25	5201	8t 01	127		999	/	Mean: 1,000 ± 0.666
		18-12.01	1111-01	14.17.01		10/4/80	11-21-86	11-21-86	t Values:
ă	Dosed by:	y: Mex	Ž	Cas	12/01	B	•		My Man Man Make White
)	-				Investigator Date
•						-	Page 103		Study Director () 11-2/ or Study Director () Date

							STUDY	STUDY SHEET SINGLE DOSE	DOSE	
(F)	TITLE	Cytog	Cytogenetic Assay	1 1	- Micronucleus	leus Test	ıt		STUDY NUMBER	STUDY NUMBER: 74309-50-001-86
Ø	Sponsor	": X	the	leka	nitral	6.9		Date Initiated:	tiated:	10-21-86
E4	est A	Test Article:	Shows	A	ZZ.			Date Ter	Date Terminated:	11.21-86
a	escri	Descriptions	21.4.	tota	reder	7		Dose Lev	.01: 2000 mm	DOSE LEVEL: 2000 ma//4. @ 10 ms//4 - 2280 ma/ms/
			•				:		P	I - 1
Δ (OSE:	DOSE: 2500	malle		SAMPLE	TIME:	12 Hours	^		3/50 / St. D. Streed Soly land,
	Monse	Sex	Infeial.	Į W	Time	Final	Date of	NO OF	No. of PCE	ne sayes in demaining of animal saye
لب	No.		(gm)	admin.	admin.	(ag.	Sacrifice		Micronuclei	- 7
	1221	B	£ 38	, A. F	11 AM			999	/	abnormal gait 2/54 abnormal
	4222	B	۵۲	12'		Miles	9.8/19.1			the sa
<u></u>	4223	B	36	£,		33	101	1000	0	tremore, 2/5 odecreased from
<u> </u>	43.24	B	670	gr.		32	/24/	000/	0	says 20 1922/82
r ~	41.25	B	70	,30		28°10	1,98/20/			Booden 1 Sy postdant 42220
F 7	4226	ot	±7	<i>#</i> ~'		36	ns/	1000	0	al contain
	4227	at	26	72"		28	90/	666	,	(ole 1) transfortable,
	4228	9	#20	480		26		999	/	30, Lilead in 10/21/08
~	577	8	7.4	48°	\rightarrow	25		1000	Q	50
لكسيا	4,30	0	26	78,	25 II	27	-	1000	0	industrial to 10
*	,		18.4	147° 01	11-12.01 140	White!	illes of	11-21-86	18-12-11	t Values: 1, 322
4	O D	Dosed by:	T - 1	S.	(d	10) Cross			the	Pancy Genglewster 1/21/84
•	1		11	~	3/3 or abnorma	\$		1/3 or derreused poorly		`
		•	I neit		1154 alnom	ž	gast demeas	derreased bound 17th 1.	() . 18 y . 1	Study Director
									20/2 2/12	2 Hoderson 18th the 3/5 que signed

ITLE: C	ytogenetic Assay	RMAKON RESEAR - Micronucle			NO. 74309-5U-601-8,
onsor:	Sutton La	boratrie	, Inc		
Valu	mes obtained from	coded slides	and subs		oding of test article
xde	حيشيني حيث	romatic Ery	ychromati throcytes ronuclei	_	Decode
1	0/29/86 719	998	2	mc	72hr 41938
?		1000	0	2000 M	19/19 72hr 42158
3.		950	50	CP	30hr 41109
4		999		1200 0	ng/ Kg 48hr 416.50
.5		999			ngika 48hu 41809
6		999			ng/Kg 72hs 42079
1. 10	129/86 714	999			ng 1Kg 72 hr 42189
8 10	130 186 719	999	/	•	ng 1Kg 30hs, 41418
1		995	5		mg1Kg 30hr 41269
0		1000	0		тдікд 48hr 41748
//		998	2	me	30hr 41148
2		998	2_	me	48hr 4152
3		999		2800	mg/Kg 72hr 4227
4.		1000	6		my 1Kg 30hr 41320
15		1000	<i>_b</i>	2000	malka 30hr 41330
6		999	1	mc	48hv 41569
7 10/3	10/86 NY	1000	0	1200	mg/Kg 48hr 4169:
· · · · ·					new Xlongiewski igator Date
				Study	t M. Song 11-21-86 Director J Date

·			SCORING SHE	ET .
				NATIONAL, INC.
TITLE: C	rtogenetic As:	say - Micronu	cleus Test	STUDY NO. \$4.309-50-601-86
Sponsor:	Sutton	Laborator	ie, he	· •
Value	es obtained f	rom coded sli	ides and sub	sequent decoding of test article
			Polychromat	
		ychromatic	Erythrocyte	
Code	Ery	throcytes	Micronuclei	
18-10/30	186 70	976	24	1200 malka 48hov 41699 , DE
19.10/30		997	3	2800 mg/kg 30hr 4147 & NG 11/20/8
20 10/31		998	2	2800 mg/kg 48 M 418307 NG 2800 marka 3010 41474 IDE
21.		1000	0	mc 48hr 41609 NG-1420/8
22		1000	.0	1200 mg/kg 48hv 41689 NU 11/20/2
23		1000	0	1200 malka 72/W 42029Nb-120181
		973	21	CP 0 30 hr 41040 NG 19201
24		999	/	2000 malka -3ph 41384 No
				1200 mg/kg 72hw 4206 4, NE 1/201
26		1000	<u> </u>	2000 mathy 30hor 4138 7 10E 1/201
27.		991	3	2000 mg/kg 48hv 41979 NG 11/20.
28.		998	2	2000 mg/Kg 30hr 41318
29.		999		2800 marka 48hr 41899
30.		997	3	2000 mg/kg 48hr 41758
31 10/3	1/8670	999	/	1200 mg/Kg 30hu 41218
	3/86 NG	999	/	1200 mg 1kg 30hv 41248
22.		499	1	me 30h 41189
2 H I	1/0/200	2 .		
۱۰۱۱ . ۱ . ر	3/86 ND	10ENU 11/3	186	2000 mg/kg 48hv 41718
		,	-	Many Longlewsk 11/3/82 Investigator Date
		·		
				Put M Garage

Page ///

CHTRMS (10)

•			ernational, in		
	cic Assay - Micron			0.84309-50	-001-86
ponsor: Sutt	on Saborato	ue, In	e.		
Values obtain	ined from coded sl	lides and s	ubsequent deco	-	
		Polychron	atic	Germell	. 72
~de ∵	Polychromatic Erythrocytes	Erythrocy		Decode	
ode 25 ///2/0/71/	· · · · · · · · · · · · · · · · · · ·	()	-ma	48hr 4	1530
6 11/3/8/20	1000	0		IKa 72ha	
7	999	1	U	IKA 30hri	
8	999		•	Ka 30hu	
39	995	5	" "	Ka 48hw	
40	996	4	0	IKA 30hr	
41 ,1/3/86:	no 996	4	2000 mc		41948
42 11/4/867		44	CP	•	41010
13	1600	0	2800 ma	IKg Bohn	
44	998	2	•	IKg 72hv	
45	999	/	me	. •	41307
46 11/4/86	no 997	3	1200 me	ukg, 48hr	41648
41 11/5/80		3	•	1/Kg 48hr	
18	997	3	mc		41199
49	999	1	2000 m	IKg 72hv	421107
50	999	1	me		42009
51 ,15/867	ns 1000	0	2800 mg/	Kg 72hv	412309
-		Page_ <i>] i</i>	Invest: Study	•	11-21-PC. Date

		SCORING SHEE	T	
			ATIONAL, INC.	
	enetic Assay - Micron			309-50-001-86
Sponsor: Sui	ttonSahoreta	ie, the	,	
Values of	otained from coded sl	ides and subs		•
		Polychromati	c ×	runce II
Code	Polychromatic Erythrocytes	Erythrocytes Micronuclei	with	Decode
Code				
52 11/5/8		<u> </u>		48hv 41789
53	999		1200 mg/kg	72hv 42040
54	, 999		2000 my 1kg	48hv 4/199
55 11/5/	8679 999		• 0	72hu 4/1969
56 11/6/8	6 NB 1000	0	me	72hr 41979
57	999	1		48hr 41679
58	998	2		72hr 42089
59	999	1	V • V	30hr 41450
60	907	93		30hw 41030
61	1000	0		1. 72hr 42299
62	999	1	· · ·	g 30hr 41394
63	1000	0		12ha 41918
64	999			72h 42209
65	09		0 0	48hr, 41610
	99	72		
66		<i>1 </i>	0	48he 41720
67	167	0	1200 mg/Kg	72hr 42050
68 11/6/8	76 999	/ /	mc	48hr, 41587
, ,	· · · ·		71 91	6: H1/19
			Mancy So investigator	nglieur KI/6/86
	•		Ruch M.	Sora 11-21-86
		Page 108	Study Direct	or Date

	PHARMAKON RES				
	ic Assay - Micronu		STUDY NO.	14309-50-10	1-86
sponsor: Sutt	on Saboratre	e, Inc.			
Values obtai	ned from coded slic	des and subse	equent decodi	ng of test artic	
_		Polychromatic	_		
	، مستنبست	Erythrocytes	with	9	
Code	Erythrocytes	Micronuclei		Decode	
69.11/6/86	ns. 983	17	CP	30hr 4103	58
70.	999		1201 mg/k	48hv 4/1	669
71.	1000	0	•	Kg 48hv 41	
12. H/6/867	ny. 999	/	Ű	1Kg 72hv 4	
73. 11/7/86	ry. 1000	0		IKg 72hr 4	
74	999		<u>~</u>	IKg 30hv 4	
75	1000	0		1Kg 48hr 1	-
76	1000			ng ika 30hr	
77	1000			gika 72 hu	
78	999		•	g 1 kg 72 hr.	
79	999	1	me	30hr 4	
80	981	19		30hr 4	
81	998	2		alkg 48hv 4	
82	996	4	1200 ma		_
83 11/7/86	ny 1000	0	0	1Kg 48hv 41	
84 11/10/86	ny 998	2	1200 m	alka 30hr 4)	1299
85 1110/80	ny 999	/	2000 mg	1Ka 48hu 4	1738
				11	,
			Manual Investige	Hongleur itor	2/11/10/820 Date
			D. Ita	/ Sma //	-21-4-
		_ , , ,	Study Din	rector	Date

	PHARMAKON RI	esearch inter	NATIONAL, INC.	
TITLE: Cytogeneti	.c Assay - Micro	nucleus Test	STUDY NO.	H309-5U-101-86
Sponsor: Sutt	m Sahorat	rie, Inc		
Values obtain	ed from coded s	lides and subs		g of test article
		Polychromati		Genell II
	Polychromatic	Erythrocytes		
Code	Erythrocytes	Micronuclei		Decode
86 11/10/86 7B	999		mc 301	W 41169
87	998	2	2000 mg/	rg 72hr 42179
88 11/10/86 TU	9 1000	0	•	19. 72hu 42248
89 11/11/86 71	4 9973	3	. 0	g, 48hv 416307
90	1000	/11/8c O	€	g. 30 m. 41503
91	999	1	, ,	g 30ha, 41350
92	970 -	30	_ •	30hr 41099
93	1000	Ŏ	•	lg 48hv 41820
94	1000	0		72h 41950
95	1000	0		1Kg 30hr 41258
96	1000	0	•	ка 30 кг 41228
97	1000	0	•	g/Kg 30hr 41428
98	998	2	mc.	48hv 41550
99	998	2	me	30 hr 41138
100 11/11/86 n	b 999		1200 mg/	
101 11/12/20 n	1100	/	2800 mg	<i>y</i>
102 11/12/86 m	0.4.	26.	26 CP	30 hv 41079
		INFIVE	-	
		14	12/81	Martub
			/(ana)	Hongherskillizke
			Study Dire	M. Jorg 11-21-86

			SEARCH INTERNA		
TITLE:	Cytogenetic As			STUDY NO. PH	1309-50-001-86
Sponsor	: Sutton	Laborat	rie, Inc		
۷a	lues obtained i	from coded si	lides and subse	equent decoding	of test article Sermell II
•			Polychromatic		
± .		ychromatic	Erythrocytes	with	
Code	Er	throcytes	Micronuclei		Decode
103 1	1/12/86719	1000	0	1200 mg/	Kg 30hr 41/309
104	<u> </u>	999		me	48h 41579
105		1000	0	2000 mg	114g 72hr. 42130
106		1000	. O		14g 30hr 41348
107 1	1/12/86 Mg.	998		2000 mg/	Kg 30hr 41378
108	1/13/80 MY	1000	0	1200 mg/18	la 72hr 4/2030
109		999		me	48hr 41548
110		999		28.00 mg	1Kg 72hr 42218
111	·	999			ug 72hu 42199
112		1000	6	me	72h 41984
113		999		ma	72hv 41999
114		997	3	1300 ms	IKG 30hr 41219
115	.1/13/86 MG	.999	/		1Kg 48hw 41769
	11/14/86 719	997	3	me	30hr 41110
117		1000	0	me	30hr 41128
118		998	2	1200 mo	1Kg 48hs 41620
	1/14/86 719	999	/	V	1Ka 72hv 42289
	1/1/100		· · · · · · · · · · · · · · · · · · ·	7	77-59-7-
				Mancy &	longliewsk. 11/14/86
	•			Investigate	/ C / / / / / / / / / / / / / / / / / /
			_	Kuth)	tor / Date
CHTRMS	(10)		Page		V

A-2417 TJ .	Cytogenetic As		SEARCH INTERN	ATIONAL, IN	c. o <i>.f#309-50</i>	1-10: 8/
TITLE:					0.4 17-007-00	7-80/-05
Sponsor	:: Sutton	Jahoril	ue, the	ę		
۷a	alues obtained f	rom coded si	lides and subs	equent deco		article el II
	ne1	h	Polychromati	_		
Code		ychromatic throcytes	Erythrocytes Micronuclei	ATCII	Decode	•
	11/14/86 73	499	1	me	72 hr 2	11925
121		1000	0	me		15+00 1420/86
122		1000	0	2800 /	ng//2 72/	n 42238
123.		998	2		ng IKg 30h	
124.		976	24	CP	, ,	v 41089
125.		991	3	mc	48h	v 41518
124.		1000	0	mo	• •	hr 41599
	11/14/86 70	998	2	2800	mg/kg 30	phr 411438
			-			
						
		$\overline{}$	·			· · · · · · · · · · · · · · · · · · ·
			\			
		· · · · · · · · · · · · · · · · · · ·				
		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
						
-						
				Mana	y Hondroi	
	-				y Hongles	
•					A. M. Sorg	11-486
			Page 112	study !	Director	Date

CHTRMS (10)

PHARMAKON RESEARCH INTERNATIONAL, INC.

TITLE:	3	- Micronucleus Test	STUDY NO. PH309-	50-001-86
Sponsor	: Sutton O)	Educatories , I		·
υ	alues obtained from	coded slides and subs	sequent decoding of test	t article
	of Mature Micronuc otain 1000 PCEs.		een in the fields scanne	ed to
Code	<u> </u>	ature Micronucleated I	Erythrocytes	
	129/86 NG	//		
2.	<u></u>	o		
3	///	·3		
4.		0	· · · · · · · · · · · · · · · · · · ·	
5	·	0		
6		0		
7 10	1/29/86 714 1	1		
8 10	130/86 ND 1			
9		0		
10	/			
	i/	2		
12		0		
13		0		
14		0		
15				
16		0		
17_	10/30/86 789	6		
	•		n 4	Lewske 10/20/96
			Maney Longle Investigator	Date Date
			Putt 1. Song	//-7/-ff
		Page 113	Study Director	Date

CHTRMS (11)

Motebook		1/23
NO CEDOOX	*	// -

	PHARMAKON RESEARCH INTERNATIONAL, INC.
TITLE: Cyt	ogenetic Assay - Micronucleus Test STUDY NO. FH309-JU-001-84
Sponsor:	Sutton Seboratories
Values	obtained from coded slides and subsequent decoding of test article
	lature Micronucleated Erythrocytes seen in the fields scanned to 1000 PCEs.
Code	Mature Micronucleated Erythrocytes
18. 101=	30/86 715 1
19.1013	10/86 715 1 10/86 715 0
20 10/3	1/86 719 0
21	6
22	
23	0
24	0
25	0
26	
21	0
28 .	11 2
29	6
30	
31 1013	31/86 719
	186 719 0
33	
34 11/3	186 NG 0
٠	Many Longlewel: 11/3/86 Investigator Date
•	Russ M. Song 11-21-8c
	Study Director Date

CHTRMS (11)

TTTLE. Cytogen	PHARMAKON etic Assay - Micr	RESEARCH INTERNATION OF THE PROPERTY OF THE PR			50-001-86
2	ttmodelar			, //	<u></u> ,
Values obta	ained from coded	slides and subse			article
i of Mature	e Micronucleated	Ervthrocytes see	Serne n in the		đ to
obtain 1000					
Code	Mature M	icronucleated En	ythrocyte:	5	·
35 1/3/80	no	<i></i>			
36		0			
37	•	0			
38		0			
39		O			
40	1				
41 11/3/807	ry	6			
42 11/4/86	111	. 3		-	
43	·	0		-	-
44		0			
45		· 			
464/4/81200		/			
47 11/5/86	ns	0			
48		0			
49		0			
50	·	0			
51 11/5/86	NO	Ó			
<i>('</i>		_	<u>Mancy</u> Investiga	Longles	rsh 1/15/86
			Study Dir	17. Sorg	11-2186 Date
		Page 115	acan's nii	.scw2	Date

		RESEARCH INTERNATIONAL, INC.
TITLE: Cyto	genetic Assay - Mic	
Sponsor:	Sutton Jahan	stories.
Values (obtained from coded	slides and subsequent decoding of test article
		Erythrocytes seen in the fields scanned to
obtain :	1000 PCEs.	
Code	Mature	Micronucleated Erythrocytes
52 11/5	186 NY	Ó
53	<u>L</u>	0
54 11/	5/8620	
55 11/6		
56		0
57		0
58	,	
<u> </u>		0
<u> </u>		7
40		
41		0
62		
63		
64		
65		
66		0
67	<u></u>	
08 11/6/8	6 ne 11	2
, ,	•	Mars U 1 Valla
		Many Longhou ik 11/6/81 Investigator Date
		D. H. H. G. 11/2/20
		Study Director Date

CHTRMS(11)

Notebook	#	//23
----------	---	------

		EARCH INTERNATIONAL, II	
	togenetic Assay - Micronu		10. PH309-5U-001-80
Sponsor:	Sutten Geborate		•
	s obtained from coded sli	Remai	el II
	Mature Micronucleated Ery n 1000 PCEs.	throcytes seen in the	fields scann e d to
Code	Mature Micr	onucleated Erythrocytes	<u>s</u>
69 1	1/6/8/02/11	3	
70		0	
7/		6	
72 11	6/86719	<u> </u>	
<i>'</i>	7/84	6	
74	1	1	
75		0	:
76		0	
77		0	
78		0	
79	,	1	
80	111	.3	
81		<i>,</i> 7	
02		^	
82 110	10, 20	.V	
84 11		0	
25 11	10 186 12	0	
0211/1	0/86 119		
	·	Manay Investiga	Gondewsk 11/10/86
		Investiga	tor / Date
		Study Dir	//. Jorg /////80 ector Date

Page | |

SCORING SHEET PHARMAKON RESEARCH INTERNATIONAL, INC.

Cytogenetic A	lssay - Micr	onucleus Test	STUDY NO. PH309-5U-001-8
: Sutte	w Jahan	etories	
lues obtained	from coded	slides and sub	osequent decoding of test article
		Erythrocytes s	
	Mature M	icronucleated	Erythrocytes
11/10/80 N	1 1/		2
			<i>o</i>
11/10/86718	·		6
			2
			0
			0
	/	•	/
	· ·	•	Ö.
		•	0
			0
			0
	/		/
			0
			0
ulul 86 TOS			0
			· 0
11/2/86 70	4		0
11/16/06/10			
			Many Gonglierok: 1/12/80 Invest/gator Dete
		,	1. 0
		Page 118	Study Director Date
	Illus obtained of Mature Microtain 1000 PCES 11/10/86 718 11/10/86 718 11/11/86 718 11/12/86 718	Ilues obtained from coded of Mature Micronucleated tain 1000 PCEs. Mature M. 11/10/80 705 11 11/11/80 705 11	Ilves obtained from coded slides and substant 1000 PCEs. Mature Micronucleated Mature Micronucleated Mature Micronucleated Milio Ro 705 M

CHTRMS (11)

Notebook	1/23	
	·	

	PHARMAKON RESEARCH INTERNATIONAL, INC.
TITLE: Cyt	ogenetic Assay - Micronucleus Test STUDY NO. PH309-5U-001-80
Sponsor:	Sutton Laboratories
Values	obtained from coded slides and subsequent decoding of test article
	lature Micronucleated Erythrocytes seen in the fields scanned to 1000 PCEs.
Code	Mature Micronucleated Erythrocytes
103 N/	12/8675
104	<u> </u>
105	
106	6
107 11	1/12/8671911 2
108 11	13/80 70
109	
110	0
111	0
1/2	0
113	0
114	
115 11/13	VR NY
116 11/15	
117	0
118	
	IIR NY
- Harris	
	Mancy Longlainsk 11/14/86 Investigator Date
	Page 119 Study Director Date

CHTRMS (11)

Notebook		//23
	-	

Sponsor: Sutton Substitution: Values obtained from coded slides and subsequent decoding of test article for Mature Micronucleated Erythrocytes seen in the fields scanned to obtain 1000 PCEs. Code Mature Micronucleated Erythrocytes Mature Micr
Values obtained from coded slides and subsequent decoding of test article # of Mature Micronucleated Erythrocytes seen in the fields scanned to obtain 1000 PCEs. Code Mature Micronucleated Erythrocytes 130 11 1476 78
of Mature Micronucleated Erythrocytes seen in the fields scanned to obtain 1000 PCEs. Code Mature Micronucleated Erythrocytes 130 11/4/96 78
of Mature Micronucleated Erythrocytes seen in the fields scanned to obtain 1000 PCEs. Code Mature Micronucleated Erythrocytes 120 11 14 16 16 16 16 16 16
120 11/4/96 hb 1 121. 122: 0 123: 0 124. 11 2 125: 1
121. 8 122. 0 123. 0 124. 11 2 125. 1 1
122. 0 123. 0 124. 11 2 125. 1 1
123· 0 124· 1/ 2 125· 1 1
124. 11 2 125. 1 1
126.
126
126
Hany Gongliewik 11/14/80
Many Gongliewsk, 11/4/20 Investigator Date Lith M. Soca 11/2/86 Study Director Date
Page 20

	PHARMAKON RESEARCH INTERNATIONAL, INC.
TITLE: Cytogenet	ic Assay - Micronucleus Test STUDY NO. 44309-5U-001-86
Sponsor: Sut	ton Laboratries
Values obtai	ned from coded slides and subsequent decoding of test article
	Polychromatic Normochromatic
Code	Erythrocytes Erythrocytes Decode
1 Km. 10/34	186 662 338 MC 72 Hrs. 419307
2	601 399 2000 mg/y 72 Hz 42150
3	538 462 CP 30 Kpcs 4/107
4	1,82 318 1200 mg/1g 48 Hea 414503
5	598 402 2000 mg/kg, 48/tes 4/809
6	586 414 1200 mg/kg 72 Her 42077
7	595 405 2000 mg/kg 72 Hres 42/89
8	479 521 2800 mg/kg 30Hes 414107
9	722 278 1200 mg/kg, 30 Hess 4126 9
10	585 415 2000 mg/kg 48 Hes 4174 27
11	489 511 MC 30 Kpes 411407
12	589 411 MC 4PHRS 415200
13. V	734 266 2800mg/kg 72Her 42279
14 /m 10/	
15.7m 11/	5/M 627 373 2000mg/ky 30Hes 413307
16	, 560 440 MC 48Her 4156 9
17 Km 11/3	1/86 665 335 120 amg/reg 48 Hes 41699
•	Miles Madison 11/5/86 Investigator Date
	Fuch 7. Song 11/20/80 Study Director Date Page 2/

PHARMAKON RESEARCH INTERNATIONAL, INC. TITLE: Cytogenetic Assay - Micronucleus Test STUDY NO. \$4309-50-001-86									
Sponsor: Suct			31001 10.77	109-50-001-86					
		•							
Values obtai	ned from coded sl	ides and subseque.	ent decoding of						
C∞de	Polychromatic Erythrocytes	Normochromatic Erythrocytes	<u>r</u>	ecode					
18 Km 11/5		535	CP	30 Hes 4102 0	ヲ				
19	, 560	440		4 30Hps 4147					
20 km 11/5	1 51	- '	0 //	48 Hes 4/830					
21 Km 11/6	186 610	390	4. 0 0	48/10 4/607	\sim				
22	623	377		48Hes 41684					
23	554	4 446) 0	72Hes 4202					
24	40:	598	. "/ //	30HPN 4104					
25	65			ha 3.04the 4138					
26	59	<u> </u>	· <i>U</i>	lag 72He 4206	-				
27	67		. 0	2 hg 48 Hz 4177					
28	45		4	Juy 30Hm 4131					
29	67			gley 48 Her 4187					
38	5 4			Ja 48 Hes 417	507				
3/	5 /			lig 30 Has 412.	109				
32	5	7 49	8 1200 mg						
33, V	5	40 46	O MC	30 Has 4110	F 9				
34/m/1/6	186 4	76 52	4 Looning	My 48 Has 417	117				
	, .	(11 em	1 / 1/1/01	,				
		_	Investigator	Date					
			luth M.	Sorg 11/20/80					
		Page 122	Study Direct	or f Date					

		EARCH INTERNATI		.	
	Assay - Micronu		STUDY NO.	4309-50.	-001-86
Sponsor: Sutto	ndabout	ried			
Values obtained	from coded sli	des and subsequ	ment decodin		article
		Normochromatic Erythrocytes		Decode	
35 Now 11/6/8	6 621	379	MC	48 Kes	415300
36	653	• /	1200mg/10		
37	670			•	, 4148-9
38	739				× 41289
39	582	418			2 41889
40	682	318	<i>U</i>	-	w 4/369
7 1	517				n 419407
42 nm 11/6/8	496				2 4/11/07
43 Am 11/7/8	6 709				1.41469
44	<i>5</i> 75		. (1	•	er 42/2 A
45	431				es 4/207
46	677	32	3 1200,	mally 48	Har 416407
47	601			0 -	18 Kps 4185-00
48	5 9			* .	oHer 4/197
49	63	9 3	6/ 200	omg/reg	72Her 421107
50	58	8 4	1/2 M	c 7	2 Han 42009
5/1/m 11/7/	186 70	-	299 28	oong ke	72 Hey 423 6 9
777		-	Thyestiga	Madie	01/7/86 Date
			Study Dire	7 Gra	n/20/ec
CHTRMS (9)	•	Page 123	WAL	-3	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

		SCORING SHEET			
		SEARCH INTERNATI		·· ·	
	tic Assay - Micron		STUDY NO.4430	19-50-001-8	£
Sponsor: Su	tton Laboret	nies			
Values obta	ined from coded sl	ides and subsequ	ment decoding of		
	Polychromatic	Normochromatic			
Code (Erythrocytes	Erythrocytes	<u>De</u>	code	
52 km/1/-	1/86 591	409	2 aou mg/kg	48Has 417.	8 7
53	5/3	487		72/fer 420	
54	577	423	"	484ke 417	_
55	634	366	4 . () -	924/cs 419	
56	635	365	.	72Hea 419	
57	642	358	,	48HRs 416	
58c V	511	489		72Her 420	
59 Km11/	7/86 584			30Her 414	
60 Km 11/1	0/86 388			36/fres 4/0	
61	697	303	_	. 72 Hes 42	_
62	586		0	30Hm 413	
63	564	436	MC	72/4es 41	9107
64	596			y 72/fee 42	
65	55	7 442	1200 0002/	19 48Her 4	-
66	53			1 - 48 Hes 4	
67	55		V /200ms/10		
68 MM 11/1	0/86 60		1 Mc	48 Hes 4	
		(11 E- W	1 . ,	<i>-</i>
			//////////////////////////////////////	dison 11/1	2/8 G
			Ruth H	Sola 11/20	186
			Study Director	Song 11/20	
		Dage 17 W			

PHARMAKON RESEARCH INTERNATIONAL, INC. Cytogenetic Assay - Micronucleus Test STUDY NO. 44309-5U-001-86 itton Jaboutries Values obtained from coded slides and subsequent decoding of test article Germall II Normochromatic Polychromatic Erythrocytes Erythrocytes Decode Code 624 538 706 556 653 542 583

	PHARMAKON RE	SEARCH INTERNATION		· .	
TITLE: Cytoge	enetic Assay - Micron	ucleus Test	STUDY NO. 4430	19-50-00	1-86
Sponsor:	utton Laborer	tries			
_	otained from coded sl		ent decoding of		cle
	Polychromatic	Normochromatic			
Code (Erythrocytes	Erythrocytes	De	code	
86 Mar 4/1	186 575	425	MC 30	Hess	41167
87 Mm 11/	11/84 611	389			
88 hm. 11/1	2/86 552	448	Isoma leg	·	
89	600	400	1200 mg/kg		
96	572	428			
91	617	38-3	Joong ky		
92	529		CP		
93	534		2800 mg/kg		. (
94	487		As a C		419507
95	351	649	1200 mg kg	30He	412507
96	557	443	1200 mg/re		
97	502		2801 mg/s		
98	678	322	* * * * * * * * * * * * * * * * * * * *		L 415507
99	390	610	MC	30 He	v 411307
100	562	438	1200 mg/		Ra 4/2300
10/	1 636	369	1 2800 mg	kg 484	kw 4/877
102 Km	11/12/86 532	468	CP	3alles	11079
	, ,	•	Cno Sm		1 / 10/
		•	Tavestigator	- Caller	1/ / 12/8 L Date
			lux 1.	Sorg 11	120/80
		Barra 17 /	Study Director	r /	Date
		Page 17 (•	-

	Pharmakon re	SEARCH INTERNATION		
TITLE: Cytogenet	ic Assay - Micron	ucleus Test	STUDY NO. 4430	9-50-001-86
Sponsor: Sut	ton Laboret	nies		
Values obtai	ned from coded sl	ides and subsequ	ent decoding of	
	Polychromatic	Normochromatic	•	
Code	Erythrocytes	Erythrocytes	De	code
103 Km/1	486 644	356		30Hes 4/309
104 1	544	456	Me	48Has 41579
105 km/1/12/	X 456	544		72/4x 42/307
10 6 nm 11/	18/86 608	392		30 Hes 41340
107	564	436	00	30/fer 4/379
108	564	436	0	72Her 420307
109	646	' 360		48 HRS 415407
110	553	447		Je 72Hes 422107
111	655	7.		72Has 42199
1/2	410	590	. ,	72 Has 4/989
113	541			42 Hav 41997
114	694			30 Has 41279
115	608			48 Hrs 41767
116	300	700	00	30 Har 4/1107
117	595	405	_	30Hes 41/207
118	65	2 348	1200mg/	w 48Hres 41620
119 Rm 11	10/86 69	9 30/	2800mg/	14 72/4 4228-9
7	/	(Miss Mad	isan 11/18/86
		/	P. L. H.S	dra 11/20/da
		Page 177	Study Director	Date
		Page / L'/		-

			SEARCH INTERNATI	ONAL, INC.		
	togenetic Ass			STUDY NO. 44	1309-50-0	101-86
Sponsor:	Sutton	Laborer	tries			
Values	s obtained fr	com coded si	ides and subsequ	ent decoding	of test art	cicle L ZZ
Code		chromatic hrocytes	Normochromatic Erythrocytes		Decode	
120 Ym	11/19/84	477	523	MC	72 Hre	419207
121	/ '	646	354	MC	72 Hrs. 30 48 Hrs. 100 ma 1119186	4115-0
122.		477	523	2800 mg/K	72/fes	422307
123		579	421	0 .	Jo Has	
124		467	533	-0	30 Has	
125		55z	448	MC		415107
126	V	692	308	MC	48Hes	41597
127/	mulighe	550	450	2800 mg/	30 Her	414307
	7 /					
			·			-
						
			•			· · · · · · · · · · · · · · · · · · ·
			Page_128	Avestigate Leute Study Direct	Madin 7. Song	11/19/86 Date 11/20/80 Date

CHTRMS (9)

CODE SHEET

PH 309-5U-001-86
Test Article: Seemell II
Dose Level: 1200, 2000 and 2800 mg/rg

Coded by: Arman Hand

Decoded by:

Date

Now 11-19-86

Code	Dose	Harvest Time	Animal #	Code	Dose	Harvest Time	Animal #
1	MC	72 Hz.	419307	27	2000 mg/Kg	48 HR	41779
2	2000 mg/Kg	72 HR.	421507	28	2000 mg/Kg	30 HR	413107
3	CP '	30 HR	41109	29	2800 mg/Kg	48 HR	41899
4	1200 ma 1 Kg	48 HR	41658	30	2000 ma/Kg	48 NR	4175 8
5	2000 mg 1Kg	48 HR	41807	3/	1200 mg/Kg	30 HR	41210
6	1200 mg /Kg	72 HK	42077	32	1200 mg/Kg	30 HR	412487
7	2000 mg /kg	72 HR	42187	<u>33</u>	mc.	30 HR	4118 2
8	2800 mg /kg	30 HR	41418	34	2000 mg/Kg	·48 HR	417/87
9	1200 mg/Kg	30 HR	41267	35	MC	48 HR	415387
10	2000 119/149	48 NR	41.7.40	36	1200 mg/Kg	72 HR	4210 9
//	mc.	30 HR	4114 7	37	2800 mg/kg	30 HR	4148 9
12	mc	48 HZ	41528	38	1200 mg/Kg	30 HR	41289
13	2800 mg 1Kg	72 HR	42277	39	8800 mg/Kg	48 KR	41887
14	2000 mg/kg	30 HR	413204	40	8000 mg /Kg	30 HR	41368
15	8000 mg/Kg	30 HR	4/3307	4/	mc :	72 XR	419427
16	mc	48 HR	41567	42	CP	30 HR	41018
17	1800 mg /Kg	48 HR	4169 7	43	2800 mg/Kg	30 HR	41468
18	- حرح	30 HR	41020	44	2000 mg 1Kg	72 HR	421207
19	2800 mg /Kg	30 HR	41477	45	mc	35 HR	41207
RO	2800 mg 1Kg	48 HR	418307	46	1200 mg/Kg	48 HR	416487
21	mč	48 HR	41609	47	2800 mg /Kg	48 HR	418581
aa	1200 mg/Kg	48 HR	41687	48	mc	30 H.C	4119 7
23	1200 mg 1Kg	ta hr	42027	49	2000 mg/kg	73 AR	421101
24	CP	30 HR	41047	50	nc	TRAR	42007
25	2000 mg/Kg	30 HR	4138 7	57	2800 mg/Kg	72 HR	4230 2
26	1200 mg/Kg	TAKK	4206 2	52	2000 mg/Kg	48 AK	4178 7

1

Study Director Lutt M. Song

CODE SHEET

Sponsor: Municipes 309-5U-001-86
Test Article: Germell II
Dose Level: 1200, 2000 and 2800 mg/kg

Coded by: formy strucked

Decoded by:

Date

		Harvest	1			Harvest	}
Code	Dose	Time	Animal #	Code	Dose	Time	Animal #
53	1200 mg/Kg	12 HR	420407	79	nc	30 HR	41199
54	2000 mg 1Kg	48 HR	4179 7	80	CP	30 HR	41067
55	mc	TRAR	41967	81	2800 mg 1Kg	48 KR	41867
56	MC	72 KR	41979	82	1200 mg/Kg	72 HR	42010
57	1200 mg 1/4	48 AR	41672	83	1200 mg/Kg	48 HR	4170 7
58	1200 mg/Kg	TAHR	4208 9	84	1200 mg /Kg	30 KR	41297
59	2800 mg/Kg	30 HR	4145 07	85	2000 mg 1Kg	48 HR	417387
60	CP -	30 HR	410307	86	mc	30 HR	41167
61	2800 mg 1Kg	72 HR	42299	87	2000 mg /Kg	7a HR	4217 8
62	8000 mg/Kg	30 HR.	4139 9	88	2800 ma 1Kg	72 HR.	पवत्रप लंग
63	mc	72 HR	4191.07	89	1200 mg/Kg	48 HR	416307
64.	2000 mg/kg	72 HR	420 9	90	2800 ma 1Kg	30 HR	41509
65	1200 mg /Kg	48 HR	416/87	91	2000 mg 1Kg	30 HR	413581
66	2000 mg 1Kg	48 HR	41720	92	- کھی	30 NR	41092
67	1200 mg/Kg	72 HR	420501	93	2800 mg 1Kg	48 HR	418287
68	mc	48 HR	41587	94	mc	72 HR	419587
69	CP	30 HR	4105 21	95	1200 mg 1Kg	30 HR	4125-07
40	1200 mg/Kg	48 MR	4166 9	96	1200 mg /Kg	30 HR	4122 67
71	2800 mg 1Hg	48 HR	418181	97	2800 mg Kg	30 NR	414207
72	2000 mg /Kg	72 HR	4214 07	98	mc	48HR	4155-87
73	2800 mg /Kg	72 HR	42269	<i>9</i> 9	MC	30 HR	41130
74	2800 mg/Kg	30 KK	41497	100	1200 mg/Kg	30 NR	412307
75	2800 mg 1 kg	48 HR	41908	101	2800 mg/Kg	48 HR	41872
76	3000 mg/Kg	30 HR	41409	102	CP	30 HR	41077
77	1200 mg /kg	72 HR	42097	/03	1200 mg 1Kg	30 HR	41.30 8
78	2000 mg 1Kg	72 HR	42167	104	me-	48 HR	41579

Study Director Ruth M. Son page 130

Notebook	#		/	//	/	Z.	3	į		

CODE SHEET

PH 309 - SU-001-86
Test Article: Hermel II

Dose Level: 1200, 2000 and 2800 mg/g

Coded by: Come Atable 10/29/46
Date 10/20/56 15/66 10/29/46
Decoded by: New

Date

_			0.0				
Code	Dose	Harvest Time	Animal #	Code	Dose	Harvest Time	Animal #
105	2000 mg/Kg	72 HR	4313 B				
	2000 mg/Kg		41347				
107	2000 mg/Kg		4137 9				
108	1200 mg 1kg	t i	42038				
109	mc	48 HR	41548				
110	2800 mg 1Kg	TR HR	422107				
111	2000 mg /Kg	72 HR	42199				
112	mc	72 HR	41987				
113	mc	72KR	41999				
114	1200 mg /Kg	30HR	41278				
115	2000 mg 1Kg	48 KR	41767				
116	mc	30 NR	411107			\	
117	MC	30 HR	41120				
118	1200 ng/kg	48 HR	416207				
119	2800 mg/kg	72 MR	4228 8	·			
120	m	72 HR	419207				
121	mc	3048-HR	415787				
122	2800 mg/kg	72 HR	422307				
123	2800 mg Kg	30 HR	4/44 87				`
124	CP	30 HR	41087				\
125	mc	48 HR	415107				
126	mc	48 NR	41599				
127	2800 ng/Kg	30 HR	4143 0				
							<u> </u>
						<u> </u>	<u> </u>

Study Director Putt M. Song page 131

SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION MUTAGENICITY ASSAY (AMES TEST)

TEST ARTICLE AT0214

(Germall II -- Diazolidinyl Urea)

Microbiological Associates A Unit of Whittaker Corporation 5221 River Road Bethesda, Maryland 20816 (301) 654-3400 Telex No. 90-8793

Whittaker

SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION MUTAGENICITY ASSAY (AMES TEST)

Sponsor:

Testing Facility: 1530 East Jefferson Street

Rockville, Maryland 20852

Study No.: T2039.501

Test Article I.D.: AT0214

Test Article Lot No.: None Provided

Test Article Description: White Powder

Storage Conditions: Room Temperature with Desiccation,

Protected from Light

Date Received: 6/7/83

Date Study Started: 6/30/83

Date Study Completed: 7/28/83

Report Date: 7/29/83

Study Coordinator:

Study Director: Steve R. Haworth, Ph.D.

Microbiological Associates

Steve R. Haworth, Ph.D. Date Timothy E. Lawlor Date Study Director

Jeanene K. Burke Date Sheila M. Olewine Date
Group Leader Biologist

Robin J. Plunkett Date Linda M. Coyle J Date Biologist

QUALITY ASSURANCE STATEMENT

Study Title: Salmonella/Mammalian-Microsome Plate Incorporation

Mutagenicity Assay (Ames Test)

Study Number: T2039.501

Study Director: S. Haworth, Ph.D.

Initiation Date: June 30, 1983

Review Completed Date: July 29, 1983

This study has been divided into a series of phases. Using a random sampling approach, Quality Assurance monitors each of these phases over a series of studies. Procedures, documentation, equipment, etc. are examined in order to assure that the study is performed in accordance with the Good Laboratory Practices regulations and to assure that the study is conducted according to the protocol.

The following are the inspection dates, phases inspected, and report dates of QA inspections of this study.

DATE OF		REPORT SUBM	MITTED TO
INSPECTION	PHASE INSPECTED	STUDY DIRECTOR	MANAGEMENT
6/15/83	Protocol review	6/15/83	6/15/83
6/30/83	Initial toxicity: Strain characterization	6/30/83	7/1/83
	Treatment & plating of the cultures		
7/28/83	Final report	7/28/83	7/29/83

This report describes the methods and procedures used in the study and the reported results accurately reflect the raw data of the study.

Nona S. Karten

Associate Director RA/QA

Introduction

test article AT0214 (MA #T2039) was received on June 7, 1983, for testing in the <u>Salmonella/mammalian-microsome</u> mutagenicity assay using five tester strains, TA98, TA100, TA1535, TA1537 and TA1538, both with and without metabolic activation by Aroclor induced rat liver microsomes.

Conclusions

The results of the <u>Salmonella</u>/mammalian-microsome mutagenicity assay indicate that under the conditions of this study, test article ATO214 (MA #T2039) did not cause a positive response on any of the tester strains with or without metabolic activation by Aroclor induced rat liver microsomes.

It should be noted that in the presence of rat liver microsomes, there was a two to three-fold non-dose-responsive increase in TA1537 revertants per plate. There were also less than two-fold increases in TA98 and TA97 revertants per plate observed in the same experiments. However, none of the increases met the criteria for a positive response as described in the protocol used for this study.

MATERIALS AND METHODS 1

Media Preparation

Top Agar for Selection of Histidine Revertants: Minimal top agar was prepared with 8 g/liter Difco Bacto Agar and 5 g/liter NaCl. After autoclaving, the molten agar was distributed in 100 ml aliquots into sterile bottles and stored at room temperature. Immediately before its use in the mutagenicity assay, the top agar was melted and supplemented with 10 ml/100 ml agar of a sterile solution which contained 0.5 mM L-histidine and 0.5 mM D-biotin. Twenty-five ml of sterile deionized water was added per 100 ml top agar when it was used in assays without metabolic activation. This ensured that final top agar and amino acid supplement concentrations were the same on plates with or without metabolic activation.

Top Agar for Viable Count Determination: Minimal top agar as described above was supplemented with 35 ml/100 ml agar of a sterile solution which contained 1.4 mM L-histidine and 0.12 mM D-biotin.

Minimal Bottom Agar: Bottom agar was Vogel-Bonner minimal medium E.²

Nutrient Broth: Nutrient broth used for growing overnight cultures of the tester strains contained 25 g per liter of Nutrient Broth No. 2 (Oxoid).

Nutrient Bottom Agar: Nutrient bottom agar was Vogel-Bonner³ minimal medium E supplemented with 25 g per liter of Nutrient Broth No. 2 (Oxoid).

¹The experimental materials, methods and procedures are based on those described by Ames, B. N., et al. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutation Research 31: 347-364, 1975.

²Vogel, H. J. and D. M. Bonner, Acetylornithinase of <u>E. coli</u>: partial purification and some properties, J. Biol. Chem., <u>218</u>:97-106 (1956).

³ Ibid.

Tester Strain Diluent: Diluent for tester strain titering contained Vogel-Bonner salt solution supplemented with 10% Nutrient Broth.

Test Article Diluent: The solvent used for diluting the test article was deionized, distilled H₂O.

Tester Strains

The tester strains used were the histidine auxotrophs TA98, TA100, TA1535, TA1537 and TA1538 as suggested by Ames. 5

GENOTYPE OF THE TA STRAINS USED FOR MUTAGEN TESTING

Histidine mutation			Additional mutations		ions
hisG46	hisC3076	hisD3052	LPS	Repair	R factor
TA1535	TA1537	TA1538	rfa	uvrB	. -
TA100		TA98	<u>rfa</u>	uvrB	+R

The tester strains possess characteristics which greatly enhance their sensitivity to mutagenic materials.

Each strain possesses the <u>rfa</u> wall mutation which has resulted in the loss of much of the lipopolysaccharide layer that coats the surface of the bacteria. This allows the entry into the bacterial cells of large ring compounds that would otherwise be excluded by a normal intact cell wall. Secondly, a stable mutation resulting in the loss of an excision repair system (<u>uvrB</u>) further enhances each tester strain's sensitivity to some mutagens. Finally, strains TA98 and TA100 contain the pkM101 plasmid which further increases the sensitivity of these two strains to some mutagens.

[&]quot;Vogel, H. J., et al., op cit.

EAmes, B. N., et al., op cit.

TA98, TA1537 and TA1538 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy) by frame shift mutagens. TA100 and TA1535 are reverted by mutagens that cause base substitutions.

Tester strains in use at Microbiological Associates were received directly from Dr. Bruce Ames, Department of Biochemistry, University of California, Berkeley.

Tester strain stocks were stored in liquid nitrogen, and fresh cultures were inoculated directly from these frozen stocks. Broth cultures were grown overnight at 37°C with shaking. At the time of its use in the mutagenicity assay, each culture was checked, as described by Ames, for the presence of the <u>rfa</u> wall mutation and strains TA98 and TA100 were checked for the presence of the pkM101 plasmid. 6

Toxicity Determination and Selection of Maximum Test Article Dose Level

The test article was checked for toxicity to the tester strains up to a concentration of 10 mg/plate. An aliquot from ten dilutions of the test article was plated with an overnight TA100 culture on selective minimal agar, both in the presence and absence of metabolic activation. Toxicity is detectable by a decrease in the number of revertant colonies occurring per plate and/or by a thinning or disappearance of the background bacterial lawn. The highest concentration of test article used in the subsequent mutagenicity assay was that which gave a detectable reduction in the number of revertants per plate and/or produced a thinning or disappearance of the background bacterial lawn.

When necessary, separate dose levels are plated for the portion of the assay with metabolic activation and the without metabolic activation portion of the assay.

The results of the preliminary toxicity determination are presented in the Results section of the final report.

⁶Ames, B. N., et al., op cit.

Plating Procedures for the Mutagenicity Assay

Test System Identification: Each plate was labeled using indelible ink with a code system which identifies the test article, test phase, dose level and activation as described in detail in Microbiological Associates' Microbial Mutagenesis Standard Operating Procedures.

Test Article: The test article was solubilized and serially diluted immediately before its use in the mutagenicity assay. Five doses of the test article were plated with all five tester strains (TA98, TA100, TA1535, TA1537, TA1538) with metabolic activation and without metabolic activation. All positive controls, solvent controls and test article doses were plated in triplicate. Without metabolic activation, 50 µl of tester strain and 50 µl of solvent or test article were added to 2.5 ml of molten selective top agar at 45°C. With metabolic activation, 50 µl of tester strain, 50 µl of solvent or test article, and 0.5 ml of S-9 mix were added to 2.0 ml of molten selective top agar at 45°C. After vortexing, the mixture was overlayed onto the surface of 25 ml of minimal bottom agar. After the overlay had solidified, the plates were inverted and incubated for 48 hours at 37°C.

<u>Positive Controls</u>: All combinations of positive controls and tester strains plated along with the assay are listed below:

Strain	Activation	Positive Controls	Conc. per Plate
			×
TA98	+	2-Aminoanthracene	4.0 µg
TA98	•••	2-Nitrofluorene	5.0 μg
TA100	+	2-Aminoanthracene	4.0 µg
TA100	-	Sodium Azide	5.0 μg
TA1535	+	2-Aminoanthracene	4.0 µg
TA1535	-	Sodium Azide	5.0 μg
TA1537	+	2-Aminoanthracene	4.0 µg
TA1537		9-Aminoacridine	75 µg
TA1538	+	2-Aminoanthracene	4.0 μg
TA1538	e ^{mo}	2-Nitrofluorene	5.0 μg

Source and Grade

9-Aminoacridine (CAS #90-45-9), Sigma Chemical Co., grade II, $^{\circ}90$ % pure

2-Aminoanthracene (CAS #613-13-8), Sigma Chemical Co., practical grade

2-Nitrofluorene (CAS #607-57-8), Aldrich Chemical Co., 98% pure

Sodium Azide (CAS #26628-22-8), Sigma Chemical Co., practical grade

Tester Strain Titers: Tester strain titers were determined by viable count assays on nutrient agar plates. The averaged number of cells plated per plate are reported on the individual strain data forms.

Test Article Sterility Determination: The most concentrated test article dilution for the mutagenicity assay was checked for sterility by plating a 50 μ l aliquot of the dilution on selective agar.

Liver Microsomal Enzymes

<u>Preparation of S-9 Homogenate</u>: Liver microsomal enzymes were prepared from male Sprague-Dawley rats that had been injected with Aroclor 1254 at 500 mg/kg. The Aroclor was diluted in corn oil to a concentration of 200 mg/ml. Five days after their i.p. injection with the Aroclor, the rats were sacrificed by decapitation, and their livers were excised. The rats were fasted for 12 hours immediately preceding sacrifice.

The preparation of the microsomal enzyme fraction was carried out with sterile glassware and solutions at $0-4^{\circ}C$. The liver from each rat was excised and placed in approximately 20 ml of 0.15M KCl contained in a pre-weighed beaker. After weighing the liver, it was transferred to another beaker containing 3 volumes of 0.15M KCl (3 ml/g of wet liver) where it was minced with sterile scissors. The minced liver was homogenized in a Potter-Elvehjen apparatus with a teflon pestle. The homogenate was centrifuged

at 9000 x g for 10 minutes in the SS-34 rotor of a Sorvall SS-3 centrifuge. The supernatant (referred to by Ames as the S-9 fraction) was decanted, and small aliquots were distributed into freezing ampules which were stored at $\leq -70^{\circ}$ C.

Preparation of S-9 Mix: The S-9 mix was prepared immediately before its use in the mutagenicity assay.

The microsomal enzyme reaction mixture (S-9 mix) which was added to the soft agar overlay contained the following components per ml:

S-9	0.10	ml
0.2M MgCl ₂ /.825M KCl	0.04	ml
0.04M NADP	0.10	ml
0.04M Glucose-6-phosphate	0.10	ml
1.00M NaH ₂ PO ₄ , pH 7.4	0.10	ml
H ₂ O	0.56	ml
•	1.00	ml

Colony Counting

Revertant colonies for a given tester strain within a given test article dilution series were counted either entirely by automated colony counter or entirely by hand. Plates with sufficient test article precipitate to interfere with automated colony counting were counted manually.

The condition of the background bacterial lawn was evaluated for evidence of test article toxicity, by using a dissecting microscope. This toxicity was scored relative to the solvent control plate and recorded along with the revertant count for that plate on the individual strain data forms using the code system on page 14.

Analysis of Data

All platings were done in triplicate. For each triplicate plating, an average and standard deviation were calculated. The calculations were done on a Hewlett-Packard HP·25 programmable calculator which employs the following equations:

Average
$$(\bar{x})$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standard Deviation (S_x)

$$S_{x} = \sqrt{\frac{\sum x^{2} - (\sum x)^{2}}{n}}$$

Evaluation of Mutagenicity Assay Data

For a test article to be considered positive, it must cause at least a doubling in the mean revertants per plate of at least one tester strain. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article. In those cases where the observed dose-responsive increase in TA1537 or TA1538 revertants per plate is less than three-fold, the response must be reproducible.

Archives

All experimental records of the study are maintained in the Microbiological Associates' archives located at 1530 East Jefferson Street, Rockville, Maryland, 20852.

Stability of the Test Article

The stability of the test article under the actual experimental conditions used in this study was not determined by Microbiological Associates.

RESULTS

The <u>Salmonella</u>/Mammalian-Microsome Mutagenicity Assay is divided into two phases. The first phase, the preliminary toxicity determination, is used to establish the dose range over which the test article will be assayed. The second phase is the mutagenicity assay of the test article.

Results of the preliminary toxicity determination of test article AT0214 (MA #T2039) are presented in Tables 1 and 2.

PRELIMINARY TOXICITY DETERMINATION

OF TEST ARTICLE

T2039-A1
Experiment I.D.

T2039.501	Table 1	AT0214
Study Number		Test Article Identification

With S-9 Activation

Test Article Concentration µg/Plate	TA100 Revertants/ Plate	TAl00 Background Bacterial Lawn*
H ₂ O 50 μl	84	1
0.0001	70	1
0.001	90	1
0.010	94	1
0.033	84	1
0.10	85	1
0.33	80	1
1.0	81	1
10	75	1
100	80	1
1,000	41	4

*Refer to background bacterial lawn evaluation code key

Date	Plated	6/30/83
------	--------	---------

Dilutions of the test article are plated with TA100 on selective agar in the presence and absence of metabolic activation. Toxicity is detectable by (1) a decrease in the number of revertant colonies occurring per plate and/or (2) by a thinning or disappearance of the background bacterial lawn. Colonies are machine counted unless otherwise noted.

PRELIMINARY TOXICITY DETERMINATION

OF TEST ARTICLE

T2039-A1 Experiment I.D.

T203	9.50	1	
Study	Nıım	her	

Table 2

AT0214
Test Article Identification

Without S-9 Activation

Test Article Concentration µg/Plate	TA100 Revertants/ Plate	TA100 Background Bacterial Lawn*
H ₂ O 50 ul	89	1
0.0001	78	1
0.001	99	1
0.010	95	1
0.033	83	1
. 0.10	97	1
0.33	82	1
1.0	97	1
10	106	1
100	100	1
1,000	11	4
	·	

*Refer to background bacterial lawn evaluation code key

Date	Plated	6/30/83
------	--------	---------

Dilutions of the test article are plated with TA100 on selective agar in the presence and absence of metabolic activation. Toxicity is detectable by (1) a decrease in the number of revertant colonies occurring per plate and/or (2) by a thinning or disappearance of the background bacterial lawn. Colonies are machine counted unless otherwise noted.

Condition of the Background Bacterial Lawn

The condition of the background bacterial lawn is evaluated for each spontaneous/induced revertant plate, both macroscopically and microscopically by using a dissecting microscope. The evaluation is recorded using the following code:

BACTERIAL BACKGROUND LAWN EVALUATION CODES

Code	Definition	Characteristics
l or blank	Normal	Distinguished by a healthy microcolony lawn.
2	Slightly Reduced	Distinguished by a noticeable thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
3	Moderately Reduced	Distinguished by a marked thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
4	Extremely Reduced	Distinguished by an extreme thinning of the microcolony lawn and an increase in the size of the microcolonies compared to the solvent control plate.
5	Absent	Distinguished by a complete lack of any microcolony background lawn.
	Evidence of test article p	precipitate of the plates is

Evidence of test article precipitate of the plates is recorded by addition of the following precipitate code to the code number used to evaluate the condition of the background bacterial lawn.

	•	
SP	Slight Precipitate	Distinguished by noticeable precipitate on the plate, however, the precipitate does not influence automated counting of the plate.
МР	Moderate Precipitate	Distinguished by a marked amount of precipitate on the plate, requiring the plate to be hand counted.
НР	Heavy Precipitate	Distinguished by a large amount of precipitate on the plate, making the required hand count difficult

Thus, 3-MP would indicate a plate observed to have a moderately reduced background bacterial lawn with a marked amount of precipitate which required a hand count.

The results of the preliminary toxicity study of MA #T2039 indicate that the appropriate maximum dose level to be tested in the mutagenicity assay would be 600 μ g per plate.

The results of the mutagenicity assay are presented in Tables 3 through 14. This data was generated in Experiments T2039-B2 through T2039-B4.

In Experiment T2039-B1, all mutagenicity plates were contaminated by bacteria which made accurate quantitation of histidine revertants impossible.

In Experiment T2039-B2, a small increase in TA98 revertants per plate and a doubling in the number of TA1537 revertants per plate was observed in the presence of rat liver microsomes. In order to confirm these observations, the test article was retested in Experiment T2039-B3 over an extended dose range in the presence of rat liver microsomes on TA98 and TA1537. The results with TA1537 are shown in Table 9. Due to the presence of an intermediate sized TA98 colony type that was present on the TA98 plates (this phenomenon has been observed in ours and other laboratories), it was not possible to accurately quantitate the TA98 revertants per plate. A three-fold increase in TA1537 revertants was observed at the 600 µg per plate dose level.

Although a two-fold and a three-fold increase in TA1537 revertants was observed in Experiments B2 and B3, due to the absence of a clear dose response, these results did not meet the criteria for a positive response as defined by the protocol used for this study.

In an attempt to further clarify the response observed on TA1537, the test article was tested on TA97, a recently developed strain that Ames has recommended to be used in place of TA1537 due to its greater sensitivity to some mutagens. In this experiment, TA98 and TA1537 were also used. The results of these studies are shown in Tables 11 through 14. Increases in revertants per plate were observed at the 500 and 600 µg per plate dose levels for all

three tester strains, TA97, TA98 and TA1537. The responses were less than two-fold on TA97 and TA98 and 2.5-fold on TA1537. Again however, none of the responses met the criteria of a positive response.

AT0214
Test Article Identification Table 3 Study Number T2039.501

										·											And the second s
er plate)	009	2	37	2	50	2	36	41	8	Concentration (µg per plate)	909	2	26	2	24	2	29	26		m	,
ion (µg p	300		27		48		32	36	11	tion (µg I	300		28	_]	22		15	22			
Concentration (ug per plate)	150		29		38		30	32	r.	Concentra	150		27		21		16	21			
	30		37		32		28	32	5		30		27		20		80	18		10	1,
	6.0	· .	34		29		30	31	3		6.0		20		23		19	21		,	7
Solvent	50 ul		32		27		36	32	5	Solvent	H ₂ ο 50 μ1		30		17		18	22		,	,
		*		Revertants	per	plate		Averaged	Standard Deviation			*	-	Revertants	per	plate		Averaged	Revertants	Standard	Deviation /
	T2039-B2 Experiment Number		Strain: TA98	Date Plated: 7/16/83	Cells Seeded: 1.0 x108	Liver Microsomes: Rat	Colonies Counted by:	Hand	Macorine 77		T2039-B2 Experiment Number		Strain: TA98	Date Plated: 7/16/83	Cells Seeded: 1.0 x108	Liver Microsomes: None	Colonies Counted by:		Machine		

*Background bacterial lawn evaluation code

Form No. MA-160 12/17/82

Table 4

T2039.501 Study Number

Test Article Identification

AT0214

										ļ												
er plate)	009	2	154	2	173	2	233	187	41.	er plate)	009	2	134	7	131	3	102		122		18	
Concentration (Ug per plate)	300		160		204		173	179	23	Concentration (µg per plate)	300		185		179		158		174		14	I
oncentrat	150		162		168		144	158	12	Concentrat	150		136	·	107		135		126	221	16	
	30		164		155		162	160	5		30		129		118		139		129	777	11	
	6.0		175		163		177	172	8		6.0		136		63		130		120	1.40	23	
Solvent	50 µ1		160		140		180	160	20	Solvent	H ₂ O 50 ul		129		157		122		136	OCT	19	
		*		Revertants	per	prace		Averaged Revertants	Standard Deviation			*		Revertants	per	plate			Averaged	Revertants	Standard	
	T2039-B2 Experiment Number		Strain: TA100	Date Plated: 7/16/83	Cells Seeded: 0,8 x108	Liver Microsomes: Rat	Colonies Counted by:	Hand	ŝ	כם טכטכה	Experiment Number		Strain: TA100	Date Plated: 7/16/83	Cells Seeded: 0.8 x108	Liver Microsomes: None	Colonies Counted by:	7		Machine [X]		

Form No. MA-160

*Background bacterial lawn evaluation code

Table 5

T2039.501 Study Number

Test Article Identification

		Solvent			Concentration (Ug per plate)	ion (µg p	er plate)		
T2039-B2 Experiment Number		50 µ1	6.0	30	150	300	009		
	*								
Strain: TA1535		11	16	13	15	12	10	•	
Date Plated: 7/16/83	Revertants								
Cells Seeded: 0,7 x108	per	16	13	11	14	7	16	مد مدسورات	
Liver Microsomes: Rat	plate								
Colonies Counted by:		15	6	13	터	14	7		
Hand									
Machine	Averaged Revertants	14	13	12	13	11	11		
	Standard Deviation		4	1	2	4	5		g
Carococa		Solvent			Concentration (µg per plate	ion (µg	er plate)		
Experiment Number		H ₂ O 50 μ1	6.0	30	150	300	009		
	*						2		
Strain: TA1535		16	14	20	31	30	6		
Date Plated: 7/16/83	Revertants						2		
Cells Seeded: 0.7 x108	per	26	8	20	19	23	16		
Liver Microsomes: None	plate						2		
Colonies Counted by:		23	20	24	16	18	15		
X PueH									
ine	Averaged Revertants	22	14	21	22	24	13		
	Standard Deviation	5	9	2	&	. 9	4		
Form No. MA-160	*Background bacterial	bacteria	lawn	evaluation	code				

Form No. MA-160 12/17/82

Concentration (µg per plate) Concentration (Ug per plate) Test Article Identification 16 10 14 13 m 9 ω 600 900 ហ m 10 ω ω 2 Q 300 300 AT0214 150 ~ m ~ な 2 4 ထ 7 α 150 *Background bacterial lawn evaluation code 30 Table 6 ဖ 30 ~ 6.0 ဖ വ 6.0 ω S Solvent Control H20 Solvent Control H20 50 µl 50 µl N ω 4 ဖ 2 ω G Study Number T2039,501 Revertants Revertants Revertants Revertants Deviation Deviation Standard Standard Averaged Averaged plate plate per per ×108 ×108 Rat Liver Microsomes: None Experiment Number Experiment Number Date Plated: 7/16/83 Date Plated: 7/16/83 Colonies Counted by: Colonies Counted by: Cells Seeded: 0.8 Cells Seeded: 0.8 Liver Microsomes: T2039-B2 T2039-B2 \boxtimes 図 Strain: TA1537 Strain: TA1537 Form No. MA-160 Machine Machine Hand Hand -20-

12/11/82

SALMONELLA MUTAGENICITY ASSAY

AT0214
Test Article Identification

T2039.501 Study Number

		Solvent		O	Concentration (ug per plate)	d bn) uoi	er plate)	-		
T2039-B2 Experiment Number		Control H ₂ O	6.0	30	150	300	909			
		50 JIL								
	*						2			
Strain: TA1538		26	23	24	19	25	16			
Date Plated: 7/16/83	Revertants						2			
Cells Seeded: 0.6 x108	per	21	21	30	22	24	16			
	plate						2			
Colonies Counted by:		20	21	19	24	20	12			
Hand Machine	Averaged Revertants	22	22	24 ,	22	23	15			
	Standard Deviation	3	1	9	3	3	2			
		Solvent			Concentration (µg per plate)	lon (µg	er plate)	1	,	
T2039-82 Experiment Number		H ₂ O 50 µl	6.0	30	150	300	009			
	*						2			
Strain: TA1538		11	11	7	10	14	5			
Date Plated: 7/16/83	Revertants				·		2			
Cells Seeded: 0.6 x10	per	12	16	13	12	10	8			
Liver Microsomes: None	plate						2			
Colonies Counted by:		13	14	17	13	14	10			
Hand	Averaged	12	1.4	12	12	13	8			
	Standard	1	m	Ŋ	. 2	2	. 3	·	·	
Form No. MA-160	*Background bacterial	bacteria	lawn	evaluation code	code		-			

Form No. MA-160 12/17/82

SALMONELLA MUTAGENESIS ASSAY

Positive Controls Table 8

		s.b.	354	45	40	16	14	42	37	98	116	27			,	
ATO214	ב זמפטרדודכמרדסון	Averaged Revertants per plate	2737.	823	2335	1419	196	1282	284	293	2052	1443				Colonies were machine counted
4	או נדכד	late	2789	870	2532	1429	192	1306	274	218	2025	1413				ies wer
t o	า เก	Revertants/Plate	2359	817	2341	1401	185	1306	253	258	2180	1465				Colon
		Rever	3062	781	2371	1427	212	1233	325	404	1952	1450				
v Odm:/N	Jaguna	Metabolic Activation	Rat Liver	None	Rat Liver	None	Rat Liver	None	Rat Liver	None	Rat Liver	None				
T2039-B2	ryper rwent Number	Concentration per plate	4.0 µg	5.0 µg	4.0 lug	5.0 µg	4.0 µg	5.0 µg	4.0 µg	75 µg	4.0 µg	5.0 µg				
501	under	Chemical	2-Aminoanthracene	2-Nitrofluorene	2-Aminoanthracene	Sodium Azide	2-Aminoanthracene	Sodium Azide	2-Aminoanthracene	9-Aminoacridine	2-Aminoanthracene	2-Nitrofluorene				
T2039,501	stuay number	Strain	TA98	TN98	TA100	TA100	TA1535	TA1535	TA1537	TA1537	TA1538	TA1538				161
		Date Plated	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83	7/16/83				Form No. MA-161
<u>'</u>			<u></u>			2.2		·					· · · · · · · · · · · · · · · · · · ·	-		

1/7/V

	AT0214	Test Article Identification
	T2039.501	Study Number

Concentration (µg per plate)	700 800	3	6 4	3	6 12	3	5 7	6 9	1 3	Concentration (µg per plate)			.								
Concentration	300 600		7 12	2	5 12		10 11	7 12	3 1	Concentration											
Solvent	H ₂ O 50 μ1 150		3		5 7		5 9	4 7	1 2	Solvent Control											
		*		Revertants		plate		Averaged Revertants	Standard Deviation		ı	*	 Revertants -) B per	plate –			Averaged	Revertants	Standard	Deviation
	Experiment Number		Strain: TA1537	Date Plated: 7/20/83	Cells Seeded: 1.1 x108	Liver Microsomes: Rat	Colonies Counted by:	Hand 🖾 Machine 🗍			Experiment Number		Strain:	Date Plated:	nes:	Colonies Counted by:	-		Machine		

Form No. MA-160 12/17/82

SALMONELLA MUTAGENESIS ASSAY

Positive Controls

Table 10

	s.D.	6						
AT0214 Test Article Identification	Averaged Revertants per plate	287						
Articl	Plate	292						
Test	Revertants/Plate	277						
	Rever	292						
Number	Metabolic Activation	Rat Liver	•					
T2039-B3 Experiment Number	Concentration per plate	4.0 µg						
.501 umber	Chemical	2-Aminoanthracene						
T2039.501 Study Number	Strain	TA1537						
	Date Plated	7/20/83						

T2039.501 Study Number

Test Article Identification

							·														
			-																		
			-																	+	
er plate)	700	3	24	3	28	3	27	26	2	er plate)											
ed brl) uo	009	2	39	2	46	2	35	40	9	ton (µg po			:				 , ,,				
Concentration (µg per plate)	500	2	35	2	38	2	39	37	2	Concentration (µg per plate)											
ŏ	300		25		33		29	29	4	٥									-		
	150		23		31		28	27	4												
Solvent	H ₂ O 50 µ1		28		29		59	29	F-1	Solvent							•				
		*		Revertants	per ,	plate		Averaged Revertants	Standard Deviation			*		Revertants	per	plate			Averaged	Revertants	Standard
1,20,39_B4	Experiment Number		Strain: TA98	Date Plated: 7/23/83	Cells Seeded: 1.1 x108	Liver Microsomes: Rat	Colonies Counted by:	Hand 🔯			Experiment Number		Strain:	Date Plated:	Cells Seeded: x10	Liver Microsomes:	Colonies Counted by:	•		Machine [

Form No. MA-160 12/17/82

*Background bacterial lawn evaluation code

Deviation

Study Number T2039.501

AT0214
Test Article Identification

T2039-B4 Experiment Number Strain: TA1537	Revertants	Solvent Control H20 50 µl	150	300	Concentration (ug per plate) 500 600 700 9 13 5	ion (µg p 600 2 13	700 3 5		
Date Plated: 7/23/83 Cells Seeded: 1.0 x108 Liver Microsomes: Rat Colonies Counted by:	per plate	m o	0 7	11 11	111	8 2 8 2	3 8 3		
80	Averaged Revertants Standard	4	7	7	10	10	ហ		
	Deviation	Solvent	7		Concentration (µg per plate)	ion (µg E	er plate)		
Experiment Number									
	*								
×10 ⁸	Revertants per					_			
Liver Microsomes:	plate								
	Averaged								
]	Standard Deviation				·			,	

Form No. 8 12/17/82

*Background bacterial lawn eval

ton code

Test Article Identification AT0214 Table 13 T2039.501 Study Number

					2																	
										1												
r plate)	700	3	86	3	95	3	102	86	4	r plate)												
od (hd be	009	2	104	2	121	2	114	113	6	əd бп) uo												
Concentration (µg per plate)	500	2	144	2	125	2	120	130	13	Concentration (µg per plate)												
8	300		117		93		80	97	19	8												_
	150		105		66		101	102	æ													
Solvent	H ₂ O 50 ul		84		96		88	89	9	Solvent Control												
		*		Revertants	per	prace		Averaged Revertants	Standard Deviation			*	-	Kevertants -	per	plate -			Averaged	Revertants	Standard	Deviation
T2039-B4	Experiment Number		Strain: TA97	Date Plated: 7/23/83	Cells Seeded: 0.5 x108	Liver Microsomes: Rat	Colonies Counted by:	Hand 🔲 Machine 🔯			Experiment Number		Strain:	Date Plated:	Cells Seeded: x108	Liver Microsomes:	Colonies Counted by:	_		Machine		

*Background bacterial lawn evaluation code

Form No. MA-160 12/17/82

SALMONELLA MUTAGENESIS ASSAY

Positive Controls

Table 14

_	s.D.	192	33	115					······································
AT0214 Test Article Identification	Averaged Revertants per plate	2687	280	1375					
Article	late	2819	305	1508					•
Test	Revertants/Plate	2776	292	1298					
	Rever	2467	242	1320					
Number	Metabolic Activation	Rat Liver	Rat Liver	Rat Liver					
T2039-B4 Experiment Number	Concentration per plate	4.0 µg	4.0 µg	3.0 ид					
umber	Chemical	2-Aminoanthracene	2-Aminoanthracene	2-Aminoanthracene					
r2039.501 Study Number	Strain	TA98	TA1537	TA97					
	Date Plated	7/23/83	7/23/83	7/23/83					

Form No 1-161

APPENDIX

PROTOCOL AMENDMENT

Date: July 28, 1983

Sponsor:

Sponsor's Test Article Designation: AT0214

Study No.: T2039.501

Protocol No.: SPGT501 112382

Protocol Title: Salmonella/Mammalian-Microsome Plate Incorporation

Mutagenicity Assay (Ames Test)

TA97 was used in addition to the five standard tester strains.

Reason for Amendment:

Ames has shown that TA97 is more sensitive to some mutagens than is TA1537. In our attempt to clarify the equivocal response observed on TA1537, the Sponsor agreed to the suggestion of using TA97 in Experiment T2039-B4.

¹Levin, et al. A new Salmonella tester strain, TA97, for the detection of frameshift mutagens. Mutation Research 94:315-330, 1982.

APPROVAL:

Steve R. Haworth, Ph.D.

Study Director

Ph.D.

Study Coordinator

Received by RA/QA 6/15/183

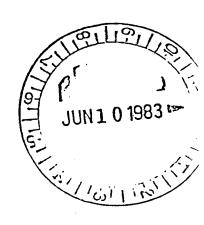
12030.501 g

Catalog No. 82-501
SALMONELLA/MAMMALIAN-MICROSOME PLATE INCORPORATION
MUTAGENICITY ASSAY (AMES TEST)

1.0 PURPOSE

The purpose of this study is to evaluate the mutagenic potential of the test article (or its metabolites) based on its ability to induce back mutations at selected loci of several strains of Salmonella typhimurium in the presence and absence of exogenous metabolic activation.

2.0 TEST ARTICLE


- 2.1 Identification: AT0214
- 2.2 Analysis:
 The sponsor will be directly responsible for determination and documentation of the analytical purity and composition of the test article (see attached Test Article Characterization form) and the stability of the dosing solutions.

3.0 SPONSOR

- 3.1 Name:
- 3.2 Address:
- 3.3 Authorized Representative:

4.0 TESTING FACILITY

- 4.1 Name: Division of Genetic Toxicology Microbiological Associates
- 4.2 Address: 5221 River Road
 Bethesda, Maryland 20816
- 4.3 Study Location: Rockville Laboratory
- 4.4 Study Director: Steve R. Haworth, Ph.D.

5.0 TEST SYSTEM

The Ames Test has been shown to be a sensitive, rapid, accurate indicator of the mutagenic activity of a wide range of chemical classes.

The tester strains to be used will be the Salmonella typhimurium histidine auxotrophs TA98, TA100, TA1535, TA1537 and TA1538 as described by Ames (Ames, et al., Mutation Research 31:347-364, 1975).

GENOTYPE OF THE TA STRAINS USED FOR MUTAGEN TESTING

Histidine mutation			Addit	Additional mutations		
hisG46	<u>his</u> C3076	hisD3052	LPS	Repair	R factor	
TA1535	TA1537	TA1538	<u>rfa</u>	<u>uvr</u> B	_	
TA100		TA98	<u>rfa</u>	uvrB	+R	

All of the tester strains contain, in addition to a mutation in the histidine operon, two additional mutations which enhance their sensitivity to some mutagenic compounds. The <u>rfa</u> mutation causes a loss of one of the enzymes responsible for the synthesis of part of the lipopolysaccharide layer of the cell wall. The resulting cell wall deficiency increases the permeability of the cell to certain classes of chemicals such as those containing large ring systems that would otherwise be excluded by a normal intact cell wall.

The second mutation is a deletion in the <u>uvrB</u> gene which results in a deficient DNA excision-repair system. This deficiency results in greatly enhanced sensitivity to some mutagens. Since the <u>uvrB</u> deletion extends through the <u>bio</u> gene, all of the tester strains containing this deletion also require the vitamin biotin for growth.

Finally, strains TA98 and TA100 also contain the pkM101 plasmid (carrying the R-factor) which further increases the sensitivity of these two strains to some mutagens. The mechanism by which this plasmid increases sensitivity to mutagens has been suggested to be due to its coding for an error-prone DNA repair polymerase.

TA98, TA1537 and TA1538 are reverted from histidine dependence (auxotrophy) to histidine independence (prototrophy)

by frame shift mutagens. TA100 and TA1535 are reverted by mutagens that cause base substitutions.

- 5.1 Source
 Tester strains in use at Microbiological Associates were received directly from Dr. Bruce Ames, Department of Biochemistry, University of California, Berkeley.
- 5.2 Storage
 All Frozen Permanent and Working Stocks of the tester strains will be stored in liquid nitrogen. Working Stocks will be prepared by growing a fresh overnight culture inoculated by a scrape of the Frozen Permanent Stock, adding DMSO (.09 ml/ml of culture) and freezing away small aliquots (0.1 0.2 ml) in glass vials.
- 5.3 Overnight Culture Preparation
 Overnight cultures will be prepared by removing a
 Working Stock vial from the liquid nitrogen freezer
 and allowing it to thaw. A loopful of the thawed
 aliquot will be transferred to a baffled shake flask
 containing approximately 50 ml of culture media.
 The inoculated flask will be placed in a shaker/
 incubator at 37°C.
- 5.4 Harvesting of Cultures
 All cultures will be harvested by monitoring optical
 density rather than by duration of incubation since
 overgrowth of cultures can cause loss of sensitivity
 to some mutagens. Cultures will be removed from
 incubation at a density of approximately 1-2 x 10
 cells per ml.
- 5.5 Genotype Characterization
 On the day of their use in the mutagenicity assay,
 all tester strain cultures will be checked for the
 following genetic markers:
 - 5.5.1 The presence of the <u>rfa</u> wall mutation will be confirmed by demonstration of sensitivity to crystal violet.
 - 5.5.2 The presence of the pkM101 plasmid will be confirmed for tester strains TA98 and TA100 by demonstration of resistance to Ampicillin.
 - 5.5.3 Spontaneous reversion frequencies that are characteristic of the respective strains will be demonstrated by plating aliquots of the culture on selective media.

6.0 EXPERIMENTAL DESIGN

The test article will be tested at a minimum of five dose levels along with appropriate solvent and positive controls on tester strains TA98, TA100, TA1535, TA1537 and TA1538 with and without metabolic activation. Following an approximate 48 hour incubation at 37 C, revertant colonies per plate will be counted.

6.1 Dose Levels Using TA100 as the indicator strain, each test article will be checked for toxicity up to a concentration of 10 mg/plate if solubility/miscibility permits. Test articles which exhibit limited solubility/miscibility will be tested for toxicity up to the maximum workable concentration attainable in the solvent of choice. The toxicity determination will be conducted both in the presence and absence of exogenous metabolic acti-An aliquot from each of at least eight dilutions of the test article will be plated with an overnight TA100 culture on selective minimal agar. Toxicity is detectable as a decrease in the number of revertant colonies occurring per plate and/or by a thinning or disappearance of the background bacterial The highest concentration of test article used in the subsequent mutagenicity assay will be that which gives a detectable reduction of revertants on the selective plates and/or a thinning or disappearance of the background bacterial lawn.

If no toxicity is observed, then the highest dose level used in the mutagenicity assay will be 10 mg/plate unless:

- The test article exhibits limited solubility or is not uniformly dispersible in the solvent of choice.
- 2) The test article precipitates heavily in the top agar.
- 3) There is insufficient test article available to either demonstrate toxicity or achieve a maximum dose level of 10 mg/plate.
- 4) The study coordinator indicates an alternate top dose level.
- 6.2 Frequency and Route of Administration
 The test system will be exposed to the test article
 via the plate incorporation methodology originally
 described by Ames (Ames, et al., Mutation Research
 31:347-364, 1975). This methodology has been

shown to detect a wide range of classes of chemical mutagens. All dose levels of test article, solvent controls and positive controls will be plated in triplicate.

- 6.3 Exogenous Metabolic Activation
 - 6.3.1 Liver Microsomal Enzymes S-9 Homogenate
 - 6.3.1.1 Homogenate Preparation The preparation of the microsomal enzyme fraction will be carried out with sterile glassware and solutions at 0-4°C. Excised livers will be placed in approximately 20 ml of 0.15M KCl contained in a pre-weighed beaker. After the liver is weighed, it will be transferred to another beaker containing 3 volumes of 0.15M KCl (3 ml/g of wet liver) where it will be minced with sterile scissors. The minced liver will be homogenized and centrifuged at 9000 x g for 10 minutes. The supernatant (referred to by Ames as the S-9 fraction) will be decanted, and small aliquots will be distributed into freezing ampules which will be stored at < -70°C.
 - 6.3.1.2 S-9 Characterization
 Each batch of S-9 homogenate will be characterized for its ability to metabolize the promutagens 7,12-dimethylbenzanthracene, and 2-amino-anthracene to mutagens as described by deSerres (deSerres, et al., Science 203:563-565, 1979).
 - 6.3.1.3 Species, Strain, Sex, Inducer
 Liver microsomal enzymes will be
 prepared from male Sprague-Dawley rats
 that have been injected with Aroclor
 1254 at 500 mg/kg. The Aroclor will
 be diluted in corn oil to a concentration of 200 mg/ml. Five days after
 i.p. injection with the Aroclor, the
 rats will be sacrificed by decapitation, and their livers will be
 excised. The rats will be fasted for
 12 hours immediately preceding sacrifice.

6.3.2 S-9 Mix

The S-9 mix will be prepared immediately prior to its use in any experimental procedure.

One ml of the microsomal enzyme reaction mixture (S-9 mix) which is added to the soft agar overlay will contain the following components:

H ₂ 0		0.56	ml
1.00M	NaH ₂ PO ₄ , pH 7.4	0.10	m1
0.20M	Mg Cl ₂ /0.825M KCl	0.04	ml
0.04M	G-6-P	0.10	ml
0.04M	NADP	0.10	ml
S-9		0.10	m1
		1.00	ml

Each plate will receive 0.5 ml of the S-9 mix.

6.4 Controls

6.4.1 Positive Controls
All combinations of positive controls and
tester strains plated concurrently with the
assay are listed below:

Strain	Activation	Positive Controls	Conc. per Plate
TA98	+	2-aminoanthracene	4.0 ug
TA98	-	2-nitrofluorene	5.0 ug
TA100	+	2-aminoanthracene	4.0 ug
TA100	-	sodium azide	5.0 ug
TA1535	+	2-aminoanthracene	4.0 ug
TA1535	-	sodium azide	5.0 ug
TA1537	+	2-aminoanthracene	4.0 ug
TA1537	_	9-aminoacridine	75 ug
TA1538	+	2-aminoanthracene	4.0 ug
TA1538	. -	2-nitrofluorene	5.0 ug

6.4.2 Solvent Controls
Appropriate solvent controls will be plated for all strains with and without metabolic activation. Solvents compatible with this test system in order of preference include but will not be limited to: Deionized distilled H₂O, dimethylsulfoxide (CAS #67-68-5),

acetone (CAS #67-64-1), and ethanol (CAS #64-17-5).

6.4.3 Sterility Controls

- 6.4.3.1 The most concentrated test article dilution will be checked for sterility.
- 6.4.3.2 The S-9 mix will be checked for sterility.
- 6.4.4 Tester Strain Titers
 Each tester strain titer will be determined by
 plating an appropriate dilution of each overnight culture on complete agar.

7.0 METHODS

7.1 Plating Procedures for the Mutagenicity Assay
The test article will be solubilized and serially
diluted immediately before its use in the mutagenicity
assay. S-9 mix will also be prepared immediately
prior to its use in the mutagenicity assay.

At least five doses of the test article will be plated with the appropriate tester strains, both with and without metabolic activation.

Without metabolic activation, 50 ul of tester strain and 50 ul of solvent or test article will be added to 2.5 ml of molten selective top agar at 45°C. With metabolic activation, 50 ul of tester strain, 50 ul of solvent or test article solution and 0.5 ml of S-9 mix will be added to 2.0 ml of molten selective top agar at 45°C. After vortexing, the mixture will be overlayed onto the surface of 25 ml of minimal bottom agar. After the overlay has solidified, the plates will be inverted and incubated for approximately 48 hours at 37°C. When necessary, aliquots of other than 50 ul of test article/solvent will be plated.

- 7.2 Test System Identification

 Each plate will be labeled using indelible ink with a code system which identifies the test article, test phase, dose level, strain and activation type as described in detail in Microbiological Associates' Microbial Mutagenesis Standard Operating Procedures.
- 7.3 Colony Counting
 Revertant colonies for a given tester strain within a given test article dilution series will be counted

either entirely by automated colony counter or entirely by hand. Plates with sufficient test article precipitate to interfere with automated colony counting will be counted manually.

- 7.3.1 Background Bacterial Lawn Evaluation
 The condition of the background bacterial
 lawn on plates in the assay will be evaluated
 for evidence of test article toxicity and
 precipitate. Evidence of toxicity will be
 scored relative to the solvent control plate
 and recorded along with the revertant count
 for that plate.
- 7.4 Analysis of Data For all replicate platings, the mean revertants per plate and the standard deviation will be calculated.

8.0 EVALUATION OF TEST RESULTS

For a test article to be considered positive, it must cause at least a doubling in the mean revertants per plate of at least one tester strain. This increase in the mean number of revertants per plate must be accompanied by a dose response to increasing concentrations of the test article. In those cases where the observed dose-responsive increase in TA1537 or TA1538 revertants per plate is less than three-fold, the response must be reproducible.

9.0 CRITERIA FOR DETERMINATION OF A VALID TEST

The following criteria must be met for the assay to be considered valid:

- 9.1 Tester Strain Integrity
 - 9.1.1 rfa Wall Mutation
 In order to demonstrate the presence of the deep rough wall mutation, all tester strain cultures must exhibit sensitivity to crystal violet.
 - 9.1.2 pkM101 Plasmid R-factor
 In order to demonstrate the presence of the
 pkM101 plasmid R-factor, tester strain cultures
 of TA98 and TA100 must exhibit resistance to
 Ampicillin.
 - 9.1.3 Characteristic Number of Spontaneous Revertants
 All tester strain cultures must exhibit a
 characteristic number of spontaneous revertants

per plate. The acceptable ranges are as follows:

TA98	10		50
TA100	80	-	240
TA1535	5	-	45
TA1537	3	_	21
TA1538	5	_	35

- 9.1.4 Tester Strain Titers
 In order to ensure that appropriate numbers of bacteria are plated, tester strain culture titers must be greater than 1x10 but less than 4x10.
- 9.1.5 Positive Control Values
 Positive control values must exhibit at least a
 three fold increase in the number of revertants
 per plate over the average value for the solvent control for the respective strain.

9.2 Toxicity

9.2.1 Minimum Number of Dose Levels
A minimum of three non-toxic dose levels are
required to evaluate assay data.

10.0 FINAL REPORT

A report of the results of this study will be prepared by the Testing Laboratory and will accurately describe all methods used for generation and analysis of data.

Results of the preliminary toxicity determinations will be presented which will include the number of revertants per plate and a background bacterial lawn evaluation for each dose level.

Results presented for the mutagenicity assay will include the number of revertants per plate with a corresponding background bacterial lawn evaluation, along with a mean and standard deviation for all replicate platings.

11.0 RECORD AND TEST ARTICLE ARCHIVES

11.1 Records
Upon completion of the final report, all raw data
and reports will be maintained by the Regulatory
Affairs Unit of Microbiological Associates in
accordance with the Terms and Conditions.

11.2	Test Article	
	A sample of the Test Article will be held in	ſ
	storage in accordance with the Terms and	
	Conditions.	

12.0 GOOD LABORATORY PRACTICES

This study will be performed in compliance with the provisions of the Good Laboratory Practice Regulations for Nonclinical Laboratory Studies.

Will this study be submitted to a regulatory agency? No If so, to which agency or agencies?

Does the sponsor request that samples of the Test Article dosing solutions be returned?

SCHEDULE OF EVENTS 13.0

SRH 7/28/83

13.1 Proposed Initiation Date: 6/29/83 6/30/83

13.2 Scheduled Completion Date: 7/29/83

14.0 REFERENCES

Ames, B.N., McCann, J., and Yamasaki, E. Methods for detecting carcinogens and mutagens with the Salmonella/Mammalian-Microsome Mutagenicity test. Mutation Research 31:347-364, 1975.

deSerres, et al., The <u>Salmonella</u> Mutagenicity Assay: Recommendations, Science 203:563-565, 1979.

SPONSOR'S AUTHORIZED REPRI	ESENTATIVE
DATE PROTOCOL APPROVED B	Y SPONSOR
Sture R. Showorth	1/1-/112
STUDY DIRECTOR	DATE